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Abstract

In this paper, I discuss the representation theory, and fill out the character table, of the unique
nonabelian group of order pq for primes p < q with q ≡ 1 (mod p). The first section of the paper
recalls the basic properties of semidirect products, and then classifies all groups of order pq for primes
p < q, proving that there are exactly two isomorphism classes–one Z/pqZ ∼= Z/pZ× Z/qZ and, only
when q ≡ 1 (mod p), one nonabelian semidirect product group G = Z/qZ o Z/pZ. Then, I give two
concrete ways to realize G: as a subgroup of the symmetric group Sq and as an index-(q − 1)/p
subgroup of Aff(A1Fq), the group of affine transformations of the affine line over the field with q
elements of order q(q − 1). Next, I discuss the conjugacy structure of G, and finally, I fill out the
character table of G, using tools from Chapters 1 to 3 of [1], specifically induced representations and
Frobenius reciprocity. This was an enlightening computation for me, because this was what really
made the representation theory of finite groups “click” for me.
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1 Introduction

1 Introduction

We begin by recalling basic properties of the semidirect product, as in [2] §5.5. Let H and K be groups
and Ψ : K → Aut(H), k 7→ Ψk be a group homomorphism. Then the semidirect product group H oΨ K
is defined to be the set {(h, k) : h ∈ H, k ∈ K} with law of composition

(h, k) · (h′, k′) = (hΨk(h′), kk′).

This law of composition makes H oΨ K a group with identity e = (eH , eK) and inverses given by
(h, k)−1 = (Ψk−1(h−1), k−1). The maps H → H oΨ K : h 7→ (h, eK) and K → H oΨ K : k 7→ (eH , k)
are injective homomorphisms, allowing us to identify H and K as subgroups H,K ≤ H oΨ K. Further,
under this identification, we have that

(1) H E H oΨ K,
(2) H ∩K = {e},
(3) |H oΨ K| = |H| · |K|,
(4) for any h ∈ H and k ∈ K we have that khk−1 = Ψk(h) ∈ H oΨ K,
(5) there is a split short exact sequence {e} → H → H oΨ K → K → {e}, and conversely every split

short exact sequence {e} → H → G→ K → {e} identifies G ∼= HoΨK for some Ψ : K → Aut(H).

This is actually a generalization of the direct product:

Lemma 1. For a semidirect product H oΨ K, the following are equivalent:

(1) The identity set map H ×K → H oΨ K is a group homomorphism (and hence an isomorphism).
(2) The map Ψ : K → Aut(H) is trivial.
(3) The subgroup K E H oΨ K is normal.

If different nontrivial Ψ give the same group up to isomorphism, then it is denoted by H oK.
We identify semidirect products in practice using the Recognition Theorem.

Theorem 1 (Recognition Theorem). Suppose G is a finite group with subgroups H,K ≤ G s.t.

(1) H E G,
(2) H ∩K = {e}, and
(3) |G| = |H| · |K|.

Then G is the semidirect product of H and K. If Ψ : K → Aut(H) is given by k 7→ (h 7→ khk−1), then
we have G ∼= H oΨ K.

Proof Sketch. Consider the set map H oΨ K → G : (h, k) 7→ hk. It is immediate to see that this is a
homomorphism. Condition (2) tells us that this map is injective, and then condition (3) tells us that it
is an isomorphism. �

Using the above recognition theorem and some Sylow theory, it is possible to classify all groups
of order pq for primes p < q.

Theorem 2 (Classification of Groups of Order pq). Suppose G is a finite group of order |G| = pq for
distinct primes p < q. Then

(1) if p - q − 1, then G ∼= Z/pZ× Z/qZ ∼= Z/pqZ is cyclic,
(2) if p | q − 1, then either G ∼= Z/pqZ is cyclic, or it is the unique nontrivial semidirect product

Z/qZ o Z/pZ.

Proof. Let G be a group of order pq for primes p < q. Let sp and sq denote the number of Sylow
p-subgroups and Sylow q-subgroups of G respectively. Sylow’s Third Theorem tells us that

sq ≡ 1 (mod q) and sq | p.

This is only possible if sq = 1. This tells us that there is a unique (and hence normal) subgroup H E G
of order q. Again, Sylow’s Third Theorem tells us that

sp ≡ 1 (mod p) and sp | q.

Therefore, either sp = 1 or sp = q.
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2 Two Realizations of G

(1) If sp = 1, then G also has a unique normal subgroup K E G of order p. Since (p, q) = 1, we
must have H ∩K = {e}. Then H and K satisfy hypotheses of Theorem 1 and Lemma 1, so that
G ∼= H ×K ∼= Z/qZ× Z/pZ.

(2) If sp = q, then we must have p | q − 1. Let K be any Sylow p-subgroup. Then Theorem 1 tells us
that G ∼= H oΨ K for some homomorphism Ψ : K → Aut(H). To analyze such Ψ, pick generators
H = 〈a〉 with |a| = q and K = 〈b〉 with |b| = p. Now the map H oΨ K → G : (h, k) 7→ hk is an
isomorphism, so every element of G can be written as aibj for some 0 ≤ i ≤ q−1 and 0 ≤ j ≤ p−1.
The conjugate bab−1 ∈ H, so that bab−1 = aλ for some λ ∈ F×q . If λ = 1, then a and b commute,
so that we have G ∼= H×K, which would imply sp = 1, which is not the case we are in. Therefore,
λ ∈ F×q r {1}. Then we must have

a = bpab−p = aλ
p

⇒ λp = 1 ∈ F×q ,

which means that λ ∈ F×q has order exactly p. This completely determines the Cayley table, so
that we get that G has presentation

G =
〈
a, b
∣∣∣ aq = bp = e, bab−1 = aλ

〉
.

To see that a different choice of λ would not change the isomorphism type: pick any other element
say µ ∈ F×q of order p. Since the subgroup of elements of F×q of order dividing p is cyclic, we get

that µ = λk for some 1 ≤ k ≤ p−1. Then picking the generator c = bk of K instead of b, we would
get the presentation with cac−1 = aµ; and this tells us that the all different nontrivial Ψ give the
same semidirect product.

�

The nontrivial semidirect product is given by Ψ : Z/pZ → Aut(Z/qZ) ∼= F×q ∼= Z/(q − 1)Z
sending 1 to any element of order p in F×q . This gives the group presentation

G =
〈
a, b
∣∣∣ aq = bp = e, bab−1 = aλ

〉
,

where λ ∈ F×q has order p. One concrete way to get such a λ is to pick a primitive root r mod q and

then take λ = r
q−1
p .

Remark 1. For convenience, I henceforth use the letter t to denote (q− 1)/p, so that q = pt+ 1, and we
can choose λ = rt.

2 Two Realizations of G

(1) Firstly, G can be realized as a subgroup G ≤ Sq as follows. Since a has order q, we try a 7→ σ :=
(1, 2, 3, · · · , q). Then bab−1 = aλ forces us to send b 7→ τ := (j 7→ 1 + (j − 1)λ (mod q)); note
that τ is indeed a permutation with inverse τ−1 = (j 7→ 1 + (j − 1)λ−1 (mod q)). If we choose a
primitive root r mod q so that λ = rt, then τ keeps 1 fixed, and decomposes into a product of t
cycles of length p as follows

τ =

t−1∏
j=0

(rj + 1, rt+j + 1, · · · , r(p−1)t+j + 1).

This realizes G as a subgroup
G ∼= 〈σ, τ〉 ≤ Sq.

(2) Another way to realize G is as an index-t subgroup of Aff(A1Fq). Recall that for any field F, the
group

Aff(A1F) = {x 7→ αx+ β : A1F→ A1F |α, β ∈ F, α 6= 0}

is the group of affine transformations of the affine line over the field F. It can also be realized as

a subgroup Aff(A1F) ≤ GL2 F via (x 7→ αx+ β) 7→
[
α β
0 1

]
. If F is a finite field F = Fq, then the

order |Aff(A1Fq)| = (q−1)q. Sitting inside it is the subgroup of affine transformations x 7→ αx+β
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4 Character Table

with α ∈ Fq of order p in F×q , i.e. satisfying αp = 1 ∈ Fq. Again, it is immediate to see that
the map G → Aff(A1Fq) given by a 7→ (x 7→ x + 1) and b 7→ (x 7→ λx) is an injective group
homomorphism, realizing

G ≤ Aff(A1Fq)
as a normal subgroup G E Aff(A1Fq) with quotient cyclic of order t, generated by the class of
x 7→ rx for any primitive root r mod q.

3 Conjugacy Structure

The next step is to find the conjugacy structure of the group G = 〈a, b|aq = bp = e, bab−1 = aλ〉, where
λ ∈ F×q has order p. Recall that every element of G can be written uniquely as aibj for 0 ≤ i ≤ q − 1
and 0 ≤ j ≤ p− 1.

(1) Let’s figure out the center Z(G). Suppose aibj ∈ Z(G) for some 0 ≤ i ≤ q − 1 and 0 ≤ j ≤ p− 1.
Then

aibj = ai+1bja−1 = ai+1−λj

bj ,

so that i ≡ i+ 1− λj (mod q)⇒ λj ≡ 1 (mod q)⇒ j = 0 since λ has order p in F×q . Then

ai = baib−1 = aλi,

so that i ≡ λi (mod q) and hence i = 0. This means that Z(G) = {e}, i.e. the center of G consists
of the identity alone.

(2) The class equation of G looks like
pq = 1 +mp+ nq

for some integers m and n with 0 ≤ m ≤ q − 1 and 0 ≤ n ≤ p − 1. Reducing mod p, we get
that n ≡ −1 (mod p), so that we must have n = p − 1. Then m = t. Therefore G has exactly
1 +m+ n = p+ t distinct conjugacy classes, and hence irreducible representations.

(3) Let’s find out the conjugacy classes. For that, pick a primitive root r mod q so that λ = rt.

The relation bab−1 = ar
t

tells us that conjugating by b (and also of course by a) doesn’t change

the congruence class of j modulo t for an element in G of the form ar
j

, so that the t conjugacy
classes of order p are those of ar

j

for 0 ≤ j ≤ t − 1. The conjugacy class of ar
j

comprises of

ar
j

, ar
t+j

, · · · , ar(p−1)t+j

. Again, the relations

a(aibj)a−1 = ai+1−λj

bj and b(aibj)b−1 = aλibj ,

tell us that conjugating by any element of G doesn’t change the exponent of b in an element of G,
so that the p − 1 classes of order q are those of bi for 1 ≤ i ≤ p − 1. Therefore, a complete set of
representatives of conjugacy classes is given by

e, b, b2, · · · , bp−1, a, ar, ar
2

, · · · , ar
t−2

and ar
t−1

.

4 Character Table

Finally, let’s fill in the character table of G. We expect there to be exactly p + t distinct irreducible
representations of G. We know the first one: the trivial representation. In fact, we know much better:
the normal subgroup H = 〈a〉 ≤ G has quotient G/H ∼= 〈b〉 ∼= Z/pZ, which has p distinct 1-dimensional
irreducible representations Uk for 0 ≤ k ≤ p−1, where b acts on Ui as ζkp for ζp = exp(2πi/p) a primitive

pth root of unity. Pulling these back to G gives p distinct 1-dimensional irreducible representations Uk of
G; further, these are all the 1-dimensional representations of G, since a given 1-dimensional representation
must factor through the abelianization of G and hence be trivial on the classes of powers of a. Therefore,
the character table looks so far like:

G 1 q p

〈a, b|aq, bp, bab−1a−r
t〉 e bi ar

j

1 ≤ i ≤ p− 1 0 ≤ j ≤ t− 1
Uk 1 ζkip 1

0 ≤ k ≤ p− 1
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4 Character Table

Observe that in these terms, the representation U0 is the trivial representation of G.

We’re now missing t representations, say V0, · · · , Vt−1 of dimensions d0, . . . , dt−1 ≥ 2, respec-
tively. Then [1] Equation 2.19 p 17 gives

pq =

p−1∑
k=0

12 +

t−1∑
`=0

d2
` = p+

t−1∑
`=0

d2
` ,

where each d` ∈ {p, q} by [1] Problem 2.38 p. 25. Therefore, this equation looks like

pq = p+mp2 + nq2

for some integers 0 ≤ m,n with m + n = t. Since q > p, we must have n = 0 and m = t. Therefore,
d0 = d1 = · · · = dt−1 = p, i.e. all the remaining representations have dimension p. How do we nail these
t representations down?

Let’s first see if we can squeeze anything more out of the orthonormality of characters. For any
k : 0 ≤ k ≤ p− 1 and ` : 0 ≤ ` ≤ t− 1, we have that

0 = 〈χUk
, χV`
〉 =

1

pq

p+

p−1∑
i=1

ζ−ikp χV`
(bi) +

t−1∑
j=0

χV`
(ar

j

)


Summing over all k, we get that

0 =

p−1∑
k=0

p+

p−1∑
i=1

ζ−ikp χV`
(bi) +

t−1∑
j=0

χV`
(ar

j

)


= p2 +

p−1∑
i=0

χV`
(bi)

p−1∑
k=0

ζ−ikp + p

t−1∑
j=0

χV`
(ar

j

)

= p

p+

t−1∑
j=0

χV`
(ar

j

)

 ,

since the sum of all kth roots of unity in any order is zero. This means that for each k : 0 ≤ k ≤ p− 1,

p−1∑
i=1

ζ−ikp χV`
(bi) = 0.

Fix a particular j : 1 ≤ j ≤ p− 1. Multiplying the above equality by ζjkp and summing over all k gives

0 =

p−1∑
k=0

ζjkp

p−1∑
i=1

ζ−ikp χV`
(bi) =

p−1∑
i=1

χV`
(bi)

p−1∑
k=0

ζ(j−i)k
p =

p−1∑
i=1

χV`
(bi) · pδij = pχV`

(bj),

so that in fact for each ` : 0 ≤ ` ≤ t− 1 and i : 0 ≤ i ≤ p− 1 we get that χV`
(bi) = 0. This is expected,

because the character of any irreducible representation of dimension at least 2 takes the value 0 on some
conjugacy class, from [1] Problem 2.39 p. 25. Therefore, the character table looks like:

G 1 q p

〈a, b|aq, bp, bab−1a−r
t〉 e bi ar

j

1 ≤ i ≤ p− 1 0 ≤ j ≤ t− 1
Uk 1 ζkip 1

0 ≤ k ≤ p− 1
V` p 0 ?

0 ≤ ` ≤ t− 1

What replaces the question mark above?
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5 Induction and Conclusion

5 Induction and Conclusion

The key to answering this question is induction of representations and Frobenius Reciprocity. Recall
that we have a normal subgroup H = 〈a〉 ≤ G of order q. This has exactly q distinct 1-dimensional
irreducible representations Ws for 0 ≤ s ≤ q − 1, where a acts on Ws as ζsq with ζq = exp(2πi/q) a

primitive qth root of unity. For each ` : 0 ≤ ` ≤ t − 1, the restriction ResGH V` is p-dimensional, and
therefore decomposes as

ResGH V` = Ws`,1 ⊕Ws`,2 ⊕ · · · ⊕Ws`,p

for integers 0 ≤ s`,1 ≤ s`,2 ≤ · · · ≤ s`,p ≤ q − 1. Since the character of V` is not identically p, we

must have that 1 ≤ s`,p. Since Ws`,p occurs in ResGH V`, Frobenius Reciprocity tells us that V` occurs in

IndGHWs`,p . But now

dimV` = p = |G/H|dimWs`,p = dim IndGHWs`,p ,

so that in fact we must have V` = IndGHWs`,p . Hence, it suffices to analyze IndGHWs for 1 ≤ s ≤ q − 1.

For any s : 1 ≤ s ≤ q−1, we compute the character χIndG
H Ws

. We know that it must take value

0 on the class of any power of b, so it suffices to analyize χIndG
H Ws

(ar
j

), for which we use [1] Equation

(3.18) p. 34 to get

χIndG
H Ws

(ar
j

) =
∑

σ∈G/H
ar

j
σ=σ

χWs
(g−1
σ ar

j

gσ),

where the sum is over cosets σ that are preserved under left multiplication by ar
j

, and gσ ∈ G is any
representative of σ. Since every coset in G/H is preserved by left multiplication by any power of a, we
in fact get that

χIndG
H Ws

(ar
j

) =

p−1∑
i=0

χWs(biar
j

b−i) =

p−1∑
i=0

χWs(ar
it+j

) =

p−1∑
i=0

ζsr
it+j

q .

Since r is a primitive root, we must have s = ru for some u : 0 ≤ u ≤ q − 1. Then, we see that

χIndG
H Ws

(ar
j

) =

p−1∑
i=0

ζr
it+u+j

q ,

which depends only on the congruence class u (mod t). Therefore, this gives us exactly t distinct values,
as we expected, for the characters of V` : 0 ≤ ` ≤ t− 1. WLOG, we may relabel these so that

χV`
(ar

j

) =

p−1∑
i=0

ζr
it+`+j

q ,

and with this, we complete the character table:

G 1 q p

〈a, b|aq, bp, bab−1a−r
t〉 e bi ar

j

1 ≤ i ≤ p− 1 0 ≤ j ≤ t− 1
Uk 1 ζkip 1

0 ≤ k ≤ p− 1
V` p 0

∑p−1
i=0 ζ

rit+`+j

q0 ≤ ` ≤ t− 1

Remark 2. In the above calculation, we encounter Gauss’s “periods” of roots of unity: the different∑p−1
i=0 ζ

rit+`

q for 0 ≤ ` ≤ t − 1. In the special case when p = 2 and q is a Fermat prime q = 22n

+ 1

for some n ≥ 0, Gauss was able to use these “two-member periods” ζuq + ζ−uq for 0 ≤ u ≤ 22n−1 − 1
to prove his famous constructability result for regular polygons, as explained in [3] Chapter 7. These
periods have fascinating properties, especially related to the action of Gal(Q[ζq]/Q). For instance, the
product of two such periods can be written as a sum of these, as explained in [3] §7.2. With our tools,
we can recognize this statement following from the complete reducibility of the tensor product of two of
the V`’s. This can be used to prove, for instance, that the unique quadratic subfield of Q[ζq] is Q[

√
q∗],

where q∗ = (−1)(q−1)/2q.
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Remark 3. The above reasoning explains what the induced representations IndGHWs for 1 ≤ s ≤ q − 1
look like. What about s = 0? It is immediate to check using Frobenius Reciprocity that in fact,

IndGHW0 =

p−1⊕
k=0

Uk.

This completes our understanding of induction of representations from H to G.

Remark 4. In the above process, we noticed that for this case of G = H o K, the irreducible repre-
sentations were of two kinds: those pulled back from the quotient G � K and those induced from the
subgroup H ↪→ G. Serre’s “Linear Representations of Finite Groups” [4] §8.2 gives a vast generalization
of the above method: it describes the method of “little groups” by Wigner and Mackey that can be used
to classify all irreducible representations of groups of the form G = H oΨ K for H E G abelian, given
that we know the representations of K.
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