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Abstract

This paper has been written in fulfillment of the requirements of the class Math 277Z: K3 Surfaces
taught at Harvard by Dori Bejleri in the Spring 2023 semester. After developing the fundamentals
of the theory of K3 surfaces, this paper proves that a given complex algebraic K3 surface is elliptic
iff it admits a polarization by the hyperbolic plane.
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1 Preliminaries

Throughout, we will closely follow [1] and [2], referring only rarely as necessary to [3].

1.1 Preliminaries on Surfaces

Throughout, we let k be a fixed algebraically closed base field. A variety X over k is defined to be a
separated, geometrically integral scheme of finite type over k. For a smooth variety X, we write ωX for
the canonical sheaf detΩX of X and KX for its class in PicX.

Next, suppose that X is a smooth projective surface. Let DivX be the group of Weil divisors
on X, i.e. the free abelian group generated by irreducible codimension 1 subvarieties of X. Recall that
two divisors C,C ′ ∈ DivX are said to be linearly equivalent if there is a function f ∈ k(X) such that
C = C ′ + div(f). The group of Weil divisors modulo linear equivalence is identified naturally with the
group of line bundles PicX on X as usual. The intersection pairing on DivX and PicX is defined by
the following theorem:
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1 Preliminaries

Theorem 1.1.1. There is a unique symmetric Z-bilinear pairing

PicX × PicX → Z

denoted by (L,L′) 7→ L · L′ satisfying the following property: if C,D ∈ DivX are smooth curves that
intersect transversally, then [C] · [D] = #(C ∩D), the number of points of intersection of C and D.

Proof. See [4, V.1.6]. ■

The lift of this pairing to DivX×DivX → Z is usually denoted by (C,D) 7→ (C,D)X , although
we will abuse notations and freely move between the two alternatives. There are two further notions of
equivalence on DivX:

(a) Divisors C,C ′ ∈ DivX are said to be algebraically equivalent if there is a connected curve T , two
closed points 0, 1 ∈ T and a divisor E on X × T , flat over T , such that E|X×0 −E|X×1 = C −C ′.

(b) Divisors C,C ′ ∈ DivX are said to be numerically equivalent if for every other D ∈ DivX, we have
(C,D)X = (C ′, D)X .

These relations satisfy

linear equivalence ⇒ algebraic equivalence ⇒ numerical equivalence.

For the first implication, take T = P1 = Proj k[s, t] and E = div(sf − t) in X × P1. For the
second implication, let H be a very ample divisor on X and use it to embed X ↪→ Pn for some n. This
allows us to embed X × T and so E into Pn × T = Pn

T . By flatness of E → T and connectedness of T ,
the Hilbert polynomials of the fibers E → T above closed points are constant. In particular, the fibers
have the same degree. On the other hand, the degree of the fiber over any closed point t ∈ T is exactly
(E|X×t, H), since H corresponds to the hyperplane class in Pn. It follows that

(C,H)X − (C ′, H)X = (E|X×0, H)X − (E|X×1, H)X = degE|X×0 − degE|X×1 = 0.

Finally, an arbitrary D can be expressed as a difference H ′ −H ′′ with H ′, H ′′ very ample. Indeed, let
H be one fixed very ample divisor on X, which is possible since X is projective. Then in particular, H
is ample, and so by definition of ampleness there is an N ≫ 1 such that D+NH is generated by global
sections. Since H itself is very ample, it follows from [4, Ex. II.7.5(d)] that H ′ = D + (N + 1)H and
H ′′ := (N + 1)H are both very ample as needed.

Given these notions, we define the subgroups Pic0 X ⊆ Picτ X of PicX to be the subgroups of
algebraically and numerically trivially classes respectively.

Definition 1.1.2. The Néron-Severi group of X is defined to be NS(X) := PicX/Pic0 X, and the group
of numerical classes on X is defined to be Num(X) := PicX/Picτ X.

In general, it is true that NS(X) is a finitely generated abelian group; however, the proof of
this statement is very difficult. The rank

ρ(X) := rankNS(X)

is called the Picard rank of X. It is however, much easier to prove that when char k = 0, the group of
numerical equivalence classes Num(X) is free abelian of finite rank (see [4, Ex. V.1.8(b)]). Since we’ll
primarily be working with algebraic K3 surfaces over k = C, this will suffice (see Proposition 2.1.3).

1.2 Preliminaries on Lattices

Definition 1.2.1. A lattice Λ is a free abelian group of finite rank endowed with a symmetric nonde-
generate integral bilinear form

⟨, ⟩ : Λ× Λ → Z.

The lattice Λ is said to be even if ⟨x, x⟩ ∈ 2Z for all x ∈ Λ; otherwise, it is said to be odd. The dual
lattice

Λ∨ := HomZ(Λ,Z)
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1 Preliminaries

is easily seen to be isomorphic to the lattice given by the following procedure. Consider the Q-vector
space ΛQ := Λ⊗Q Z. Since Λ is torsion-free, it follows that we have a natural embedding Λ ↪→ ΛQ. We
may then extend ⟨, ⟩ to a symmetric nondegenerate rational bilinear form on ΛQ and then consider the
other manifestation of the dual lattice

{x ∈ ΛQ : ⟨x, y⟩ ∈ Z for all y ∈ Λ}.

This identification is achieved by extending any φ : Λ → Z to φQ : ΛQ → Q and then using that we have
a symmetric nondegenerate bilinear form on the Q-vector space ΛQ given by ⟨, ⟩. With this identification,
we immediately get a natural inclusion map Λ ↪→ Λ∨. The discriminant group of Λ is defined to be the
quotient group

disc(Λ) := Λ∨/Λ.

Since both Λ and Λ∨ are free abelian groups of the same rank, it follows that disc(Λ) is a finite group,
whose size is easily seen to be the absolute value of the determinant of any Gram matrix of Λ. Indeed, if
we take a basis {ei} of Λ and consider the corresponding Gram matrix G = [⟨ei, ej⟩], then if we identify
Λ with Zr (r = rankΛ) via ei, then Λ∨ ∼= G−1Zr and so disc(Λ) ∼= Zr/GZr, and the result follows from
elementary divisor theory of finite abelian groups. We say the lattice Λ is unimodular if disc(Λ) = {0}, or
equivalently if ⟨, ⟩ is a unimodular bilinear pairing, i.e. that under some (and hence any) basis its Gram
matrix has determinant ±1. We define the length of the lattice Λ to be the length of its discriminant
group as a finite Z-module, i.e.

ℓ(Λ) := ℓ(Λ∨/Λ).

Finally, we call a lattice positive definite, negative definite, or indefinite according to the classification of
the extension of ⟨, ⟩ to ΛR and talk of its signature as usual.

We’ll need the following easy result:

Lemma 1.2.2. Let Λ ↪→ Ξ be an embedding of lattices (i.e. an embedding of abelian groups that
preserves the bilinear form). Let Λ⊥ := {x ∈ Ξ : ⟨x, y⟩ = 0 for all y ∈ Λ} be the orthogonal complement
of Λ in Ξ. Then the following are equivalent:

(a) The lattice Λ satisfies Λ = (Λ⊥)⊥.
(b) There is some lattice Π ⊆ Ξ such that Λ = Π⊥.
(c) The image of Λ in Ξ is saturated, i.e. the cokernel Ξ/Λ is torsion free.

Proof. The implication (a) ⇒ (b) is clear. The implication (b) ⇒ (c) follows from the fact that if x ∈ Λ
is such that for some integer n ≥ 1 we have ⟨nx, y⟩ = 0 for all y ∈ Π, then already ⟨x, y⟩ = 0 for all
y ∈ Π. The implication (c) ⇒ (a) follows from first consider the Q-tensored embedding ΛQ ↪→ ΞQ and
then noting that under the natural embeddings of these lattices into their respective tensor products
with Q, we have (Λ⊥)⊥Q = ΛQ by linear algebra, from which it follows that if x ∈ (Λ⊥)⊥, then there is

an n ≥ 1 such that nx ∈ Λ. Since Ξ/Λ is torsion free, this implies x ∈ Λ already, proving (Λ⊥)⊥ ⊆ Λ,
with the other inclusion being obvious. ■

Definition 1.2.3. An embedding of lattices Λ ↪→ Ξ that satisfies the equivalent conditions of the
previous lemma is said to be a primitive embedding.

In general for an embedding Λ, the double perp (Λ⊥)⊥ is called the primitive closure or saturation
of Λ in Ξ, and is the smallest primitively embedded lattice containing it.

Finally, we will quote three useful theorems from the theory of lattices without proof. To state
the first, let U be the hyperbolic plane which is Z⊕2 equipped with the intersection form that has Gram
matrix [

0 1
1 0

]
.

On the other hand, let E8(−1) be the usual E8 matrix twisted by −1, i.e. the rank 8 lattice with
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2 Introduction to K3 Surfaces

intersection form 

−2 0 1 0 0 0 0 0
0 −2 0 1 0 0 0 0
1 0 −2 1 0 0 0 0
0 1 1 −2 1 0 0 0
0 0 0 1 −2 1 0 0
0 0 0 0 1 −2 1 0
0 0 0 0 0 1 −2 1
0 0 0 0 0 0 1 −2


.

Then we have:

Theorem 1.2.4. Let Λ be an even indefinite unimodular lattice of signature (r, s) with s ≥ r. Then
r ≡ s (mod 8) and Λ is isometric to

U⊕r ⊕ E8(−1)⊕(s−r)/8.

Proof. See [5, V.2.2]. The proof of this given there amounts to proving a uniqueness theorem of lattices
of this type, and then noting that the lattice on the right is of this type. ■

An example of this is:

Definition 1.2.5. The K3 lattice is defined to be

ΛK3 := U⊕3 ⊕ E8(−1)2.

This is, up to isometry, the unique even indefinite unimodular lattice of signature (3, 19). The
relevance of this lattice will become clear below. The last theorem that we need is:

Theorem 1.2.6. Let Λ be an even lattice of signature (r, s). If r ≤ 3, s ≤ 19, and ℓ(Λ) ≤ 22− r, then
Λ admits a primitve embedding Λ ↪→ ΛK3. Further, if in fact r < 3, s < 19 and ℓ(Λ) ≤ 20− r, then this
primitive embedding is unique up to isometries of ΛK3.

Proof. See [6]. The first statement is contained in Cor. 1.12.3, and the second in Prop. 1.14.4. ■

The relevance of these will become clear in Examples 2.4.9 and 2.4.10.

2 Introduction to K3 Surfaces

2.1 Algebraic K3 Surfaces

Definition 2.1.1. An algebraic K3 surface is a smooth projective surface X such that the canonical sheaf
is trivial (ωX

∼= OX) and the first cohomology group H1(X,OX) = 0.

If X is an algebraic K3 surface, it follows that h0(X,OX) = 1 and h1(X,OX) = 0. From Serre
Duality, it follows that h2(X,OX) = h0(X,ωX) = h0(X,OX) = 1, where in the last step we have used
ωX

∼= OX . It follows that the Euler characteristic

χ(X,OX) = h0(X,OX)− h1(X,OX) + h2(X,OX) = 2.

When X is a K3, we have χ(X,OX) = 2 and KX = 0, so the classical Riemann-Roch theorem for X, [4,
V.1.6], reduces to:

Proposition 2.1.2. Let X be an algebraic K3 surface. Then for any line bundle L on X we have

L2 = 2χ(X,L)− 4.
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This has several interesting consequences in and of itself; e.g., this proves that an algebraic K3
X cannot admit a map of odd degree to projective space (and in particular cannot be embedded as an
odd-degree subvariety of projective space), because otherwise the hyperplane class would give rise to a
line bundle with odd self-intersection. From this proposition, another standard result follows:

Proposition 2.1.3. Let X be an algebraic K3 surface. Then Picτ (X) = 0. Equivalently, the natural
surjections PicX → NS(X) → Num(X) are isomorphisms.

Proof. Let 0 ̸= L ∈ Picτ (X), so that in particular L2 = 0. Since X is projective, X admits an ample line
bundle H. Since L is numerically trivial, L ·H = 0. But this proves that h0(X,L) = 0, since otherwise
L ∼= L(C) for some curve C ⊂ X, from which we’d get L · H > 0, since an ample line bundle pairs
with an effective divisor positively. The same applies to −L, so from Serre duality we conclude also that
h2(X,L) = h0(X,KX − L) = 0. It follows then that

L2 = −2h1(X,L)− 4 < 0,

which is a contradiction. ■

We end this section with an example.

Example 2.1.4. (Smooth Complete Intersection K3s) Let X ⊂ Pn be a smooth complete intersection
of hypersurfaces H1, . . . ,Hr ⊂ Pn of degrees d1, . . . , dr respectively with d1 ≤ · · · ≤ dr. Then we
call X a smooth complete intersection of type (d1, . . . , dr;n); note that dimX = n − r and degX =
d1 · · · dr. Further, X is nondegenerate iff d1 ≥ 2. We will show that the nondegenerate smooth complete
intersection K3s surfaces are surfaces of type (4; 3), (2, 3; 4) and (2, 2, 2; 5).

Suppose that X is a smooth complete intersection K3 of type (d1, . . . , dr;n) with 0 ≤ r ≤ n.
Since X is a surface, r = n− 2. Next, a repeated application of the adjunction formula and the equality
ωPn ∼= OPn(−n− 1) gives that

ωX
∼= OX

(
−n− 1 +

r∑
i=1

di

)
,

so, since ωX is trivial, we get
∑r

i=1 di = n+ 1. Since each di ≥ 2, it follows that

n+ 1 =

r∑
i=1

di ≥ 2r = 2n− 4,

which implies that n ≤ 5. On the other hand, P2 itself has nonzero canonical sheaf, so r ≥ 1 and n ≥ 3.
It follows immediately that the only possible values of (d1, . . . , dr;n) for which X could be a K3 are
(4; 3), (2, 3; 4), and (2, 2, 2; 5), and for each of types X is a smooth surface with trivial canonical sheaf. It
remains to show that in each of these cases, H1(X,OX) = 0, and this is proved in the following lemma.

Lemma 2.1.5. Let X be a smooth complete intersection of type (d1, . . . , dr;n), where n ≥ 2 and
0 ≤ r ≤ n − 1, with d1 ≤ · · · ≤ dr. Then for each ℓ ∈ Z and 1 ≤ q ≤ n − r − 1, we have that
Hq(X,OX(ℓ)) = 0. In particular, H1(X,OX) = 0 whenever dimX ≥ 2.

Proof. We induct on r, with the case r = 0 following from our knowledge of the cohomology Hq(Pn,OPn(ℓ))
of projective spaces. Suppose that the statement has been proven for some n and r with 0 ≤ r ≤ n− 2,
and let X be a smooth complete intersection of type (d1, . . . , dr+1;n). Then X = Y ∩H, where Y is a
smooth complete intersection of type (d1, . . . , dr;n) and H is a hypersurface of degree dr+1. For each
ℓ ∈ Z, we have the short exact sequence of sheaves

0 → OY (−dr+1 + ℓ) → OY (ℓ) → OX(ℓ) → 0.

Then for any 1 ≤ q ≤ n− r − 2, the long exact sequence in cohomology contains the terms

Hq(Y,OY (ℓ)) → Hq(X,OX(ℓ)) → Hq+1(Y,OY (−dr+1 + ℓ)).

By the inductive hypothesis, the outer two terms are zero. Therefore, it follows that so is the middle
term. ■
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2.2 Curves on K3 Surfaces

Suppose that C is a reduced connected projective curve. Then we recall that is arithmetic genus pa(C) :=
h1(C,OC), and its geometric genus pg(C) is the genus of its normalization. If ν : C̃ → C denotes the
normalization, then the cokernel K of OC → ν∗OC̃ is a skyscraper sheaf supported over the singular
locus of C, and we get the short exact sequence

0 →
⊕

x∈Csing

H0(C,Kx) = H0(C,K) → H1(C,OC) → H1(C̃,OC̃) → H1(C,K) = 0.

It follows that the arithmetic and geometric genera are related by

pa(C) = pg(C) +
∑

x∈Csing

δx

where the δ-invariant δx := h0(C,Kx).

Now suppose that C lies on a smooth projective surface X. Then the adjunction formula tells
us that

2pa(C)− 2 = C · (C +KX).

When X is a K3, it follows that we have

C2 = 2pa(C)− 2 = 2pg(C)− 2 + 2
∑

x∈Csing

δx.

This already shows that given any (reduced, connected) curve C on a K3 surface, we must have C2 ≥ −2,
and that the inequality is strict whenever C is singular. Since C2 is always even, we have shown:

Proposition 2.2.1. Let X be a K3 surface. Then:

(a) X does not contain any (−1)-curves, and hence is minimal with respect to blow-ups in its birational
class.

(b) If C is a reduced connected curve on X such that C2 = −2, then C is a smooth rational curve.

2.3 Complex K3 Surfaces

Definition 2.3.1. A complex K3 surface is a compact connected 2-dimensional complex manifold X such
that the canonical sheaf is trivial (ωX

∼= OX) and the first cohomology group H1(X,OX) = 0.

Serre’s GAGA principle implies that if X is an algebraic K3 surface over k = C, then the
corresponding analytic space Xan is a complex K3 surface. Next, we collect some fundamental results
about complex K3 surfaces.

Theorem 2.3.2. Let X be a complex K3 surface. Then the singular cohomology

Hq(X,Z) ∼=


Z, if q = 0, 4,

Z⊕22 if q = 2, and

0, else.

Proof. Firstly, it follows as in the previous section that χ(X,OX) = 2. Since detTX
∼= ω∨

X
∼= OX , it fol-

lows that c1(X) := c1(TX) = c1(detTX) = 0, so that from Noether’s Formula [7, I.5.5] it follows that the
topological Euler characteristic e(X) = c2(X) = 24. Next, we have that H0(X,Z) ∼= H4(X,Z) ∼= Z, since
X is a connected oriented manifold. Next, look at the long exact cohomology sequence corresponding to
the exponential exact sequence

0 → Z → OX → O×
X → 0.

Firstly H0(X,OX) ↠ H0(X,O×
X) given by C ↠ C× and H1(X,OX) = 0 tells us that H1(X,Z) = 0. By

Poincaré duality, it follows that

0 = rankH1(X,Z) = rankH1(X,Z) = rankH3(X,Z)
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so that H3(X,Z) is torsion and so again by Poincaré duality we have

H3(X,Z) ∼= H3(X,Z)tors ∼= H1(X,Z)tors.

However, we have:

Lemma 2.3.3. If X is a complex K3 surface, then H1(X,Z) is torsion-free.

Proof. Otherwise, there would be some integer n ≥ 2 and a surjection H1(X,Z) ↠ Z/n, which would give
a surjection π1(X) ↠ Z/n. The kernel of this map would correspond to a degree n topological covering
space π : Y → X, which would then satisfy e(Y ) = ne(X) = 24n. On the other hand, since π is a
topological covering map, we have ωY

∼= π∗ωX so that ωY
∼= OY and hence h2(Y,OY ) = h0(Y, ωY ) = 1.

From Noether’s formula, we’d get as before that 2 − h1(Y,OY ) = χ(Y,OY ) = (1/12)c2(Y ) = 2n ⇒
h1(Y,OY ) = 2 − 2n. But this is a contradiction, since the left hand side is nonnegative and the right
hand side negative. ■

It follows from this that H3(X,Z) = H1(X,Z) = 0. Then from the Universal Coefficient Exact
sequence

0 → Ext1(H1(X,Z),Z) → H2(X,Z) → Hom(H2(X,Z),Z) → 0

it follows that H2(X,Z) is torsion free and hence free abelian. Since the topological Euler characteristic
e(X) = 24, it follows that rankH2(X,Z) = e(X)− rankH0(X,Z)− rankH4(X,Z) = 22.

■

2.4 Lattice and Hodge Theory for K3 Surfaces

Recall that Poincaré duality equips H2(X,Z) with a unimodular bilinear paringB : H2(X,Z)×H2(X,Z) →
Z. Since X is in particular a closed real 4-manifold, we can apply the Hirzebruch Signature Formula to
give us the signature of this pairing

σ(X) = ⟨L1(p1(X)), [X]⟩ =
〈
1

3
p1(X), [X]

〉
=

1

3
(c1(X)2 − c2(X)) = −16.

This along with rankH2(X,Z) = 22 tells us that this bilinear paring B has signature (3, 19). Finally:

Lemma 2.4.1. The bilinear pairing B is even, i.e. for any x ∈ H2(X,Z) we have B(x, x) ≡ 0 (mod 2).

Proof. Let w, v ∈ H∗(X,Z/2) and be the total Stiefel-Whitney and Wu classes (of the tangent bundle to
X) respectively; these are related by w = Sq(v), where Sq denotes the total Steenrod square operation.
In particular, we have v1 = w1 = 0 (since X is a complex manifold) and w2 = v2 + v21 = v2. Next, the
defining property of the Wu class tells us that if y ∈ H2(X,Z/2) is any other element, then

w2 ⌣ y = v2 ⌣ y = Sq2 y = y2.

Since the first Chern class (also of the tangent bundle) c1 = 0, as established above, it follows from
w2 ≡ c1 = 0 (mod 2) that for any element y ∈ H2(X,Z/2) we have y2 = 0. But now the cohomology
of X is free abelian in all ranks, and so the Universal Coefficients map H∗(X,Z) ⊗ Z/2 → H∗(X,Z/2)
is an isomorphism. In particular, if x ∈ H2(Z,Z) is any element and y = x is its mod 2 reduction, then
y2 = 0 says exactly that B(x, x) = x ⌣ x ∈ H4(X,Z) is zero mod 2, as needed. ■

This is a complex analytic analog of Proposition 2.1.2. It follows that H2(X,Z) is an even
indefinite unimodular lattice of signature (3, 19). It follows from Theorem 1.2.4 quoted above that:

Theorem 2.4.2. Let X be a complex K3. Then the lattice H2(X,Z) is an even indefinite unimodular
lattice of signature (3, 19) and hence isometric to the K3 lattice

ΛK3
∼= U⊕3 ⊕ E8(−1)⊕2.
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2 Introduction to K3 Surfaces

From now on, let X be an complex algebraic K3 surface, so that X is projective and hence
Kähler, and hence H∗(X,C) admits a Hodge structure.1 We have the following theorem:

Theorem 2.4.3. Let X be an complex algebraic K3. Then the Hodge diamond of X is given by the
following:

1

0 0

1 20 1

0 0

1

Proof. Most of the Hodge diamond of X follows immediate from Theorem 1.3.2; the only thing left to
know is h0,2, which we compute using

h0,2 = h0(X,Ω2
X) = h0(X,ωX) = h0(X,OX) = 1.

From b2(X) = 22, it follows then that h1,1 = 20. ■

We know that H2(X,Z) admits a a Hodge structure of weight 2, and we can write

H2(X,C) ∼= H2(X,Z)⊗ C ∼= H2,0(X)⊕H1,1(X)⊕H0,2(X),

where the outer two pieces are one-dimensional and complex conjugates. The cup product on H2(X,Z)
extends to a bilinear pairing on H2(X,C) given by ⟨α, β⟩ 7→ α ·β =

∫
X
α∧β. If we write H2,0(X) = CσX

for some choice of σ, then H0,2(X) = CσX and the Hodge-Riemann bilinear relations say that:

(a) σ2
X = 0,

(b) σX · σX > 0, and
(c) H1,1(X)⊥ = H2,0(X)⊕H0,2(X).

The first and third of these follow from considering bidegrees, and (b) follows from the fact that
σX agrees with the Hodge star ∗σX of σ, at least upto a positive real constant. This set-up allows us to
study the moduli theory of K3 surfaces in detail, as follows.

Definition 2.4.4. A marked K3 surface is a pair (X,Φ) where X is a complex K3 surface and Φ is a
chosen isomorphism

Φ : H2(X,Z) → ΛK3.

An isomorphism of marked K3 surfaces is defined to be an isomorphism of the underlying K3
surfaces that preserves the marking. Next, note that we can produce a map, called the period map,

{isomorphism class of marked K3 surfaces(X,Φ)} → P(ΛK3 ⊗ C)

given by sending (X,Φ) to the complex line Φ(H1,1(X)) ⊆ ΛK3 ⊗ C. By the Hodge-Riemann
bilinear relations, the image of this map is contained in the subset

D(ΛK3) := {σ ∈ P(ΛK3 ⊗ C) : σ2 = 0, σ · σ > 0}.

This is called the period domain for K3 surfaces. Since it is an open subset of a smooth quadric hyper-
surface in P(ΛK3 ⊗C)21, it follows that D(ΛK3) is a 20-dimensional smooth quasiprojective variety. The
fundamental result of the moduli theory of K3 surfaces is:

1By a theorem of Siu (see [7, §IV.3]), any complex K3 X is Kähler, and so the cohomology H∗(X,C) admits a Hodge
Decomposition. Siu’s proof is way beyond the scope of this article.
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Principle 2.4.5 (Torelli). The map

{isomorphism class of marked K3 surfaces(X,Φ)} → D(ΛK3)

defined above is a bijection.2

The reasoning for introducing a marking is that it is in general easier to work with the moduli
spaces of marked K3s (with various additiona specifications), and then to consider the moduli space of
all K3s to mod out by an appropriate action by the orthogonal group O(ΛK3).

Finally, note also that the long exact sequence in cohomology gives us an embedding

c1 : Pic(X) ∼= H1(X,O×
X) ↪→ H2(X,Z).

It is clear from Chern-Weil Theory that c1 maps Pic(X) to the Hodge classes

Hdg1(X) := H1,1(X) ∩H2(X,Z).

The Lefschetz (1,1) principle, which is the (1, 1) case of the Hodge conjecture over Z and whose proof
we recall here below, says that c1 is surjective onto this lattice; this is true for any arbitrary compact
Kähler manifold X.

Proposition 2.4.6 (Lefschetz (1,1) Principle). Let X be any compact Kähler manifold. The Chern
class map c1 : Pic(X) → Hdg1(X) is surjective.

Proof. Consider once again the exponential long exact sequence in cohomology, which contains the terms

H1(X,O×
X)

c1−→ H2(X,Z) i∗−→ H2(X,OX).

Since X is compact Kähler, we have an identification H2(X,OX) ∼= H0,2(X), and under this identification
i∗ is given by the restriction of the projection map H2(X,C) → H0,2(X), so Hdg1(X) ⊆ ker i∗ = im c1. ■

In general, the image of the map c1 is called the Néron-Severi Lattice NS(X) of X. When X
is a complex algebraic K3 surface, this coincides with the previous definition by Proposition 2.1.3 and
Serre’s GAGA principle. The above argument shows that in the case of a complex algebraic K3 X, the
first Chern class gives an isomorphism c1 : Pic(X) → NS(X) = Hdg1(X). Recall that the Picard rank
of X is

ρ(X) = rankNS(X).

It follows immediately from the above discussion that

ρ(X) = dimC NS(X)C ≤ dimC H1,1(X,C) =: h1,1(X) = 20,

which shows that the Picard rank of a complex algebraic K3 (and hence by the Lefschetz principle, that
of any algebraic K3 over any field of characteristic zero) is at most 20.3 Again from Proposition 2.1.3 and
the Hodge Index Theorem [4, V.1.9], it follows that the lattice NS(X) has index (1, ρ(X)− 1). Finally,
since NS(X) is given by the intersection with a subspace of the complexification, it follows immediately
that NS(X) ↪→ H2(X,Z) is a primitive embedding.

The above discussion gives rise to the natural question: which sublattices Λ ↪→ ΛK3 occur as
Néron-Severi lattices of K3 surfaces? The above discussion certainly gives necessarily conditions; namely,
Λ needs to be primitive and of signature (1, ρ − 1), where ρ = rankΛ. Further, Λ must contain some
class that can be an ample class; equivalently, if there is some H ∈ Λ such that H2 > 0. It turns out
at these conditions are also sufficient, at least for a somewhat weaker result. To state this result, more
precisely, we introduce the notion of a polarization.

2This is not strictly true, since one must account for automorphisms; this is why we call it is more of a guiding “principle”
rather than a theorem. A precise formulation can be found in [3, Prop. 7.2.1]. Another precise formulation in a slightly
different direction is given below, see Theorem 2.4.8.

3It is interesting to contrast this with the situation in positive characteristic, where it is again true that ρ(X) ≤ 22, which
can be proven using ℓ-adic étale cohomology just as it is for complex cohomology above, but where the bound ρ(X) = 22
can in fact be achieved. Algebraic K3 surfaces that achieve this bound are said to be supersingular, and supersingular K3
surfaces admit a rich theory [8].
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3 Elliptic K3 Surfaces

Definition 2.4.7. Given any primitive sublattice Λ ↪→ ΛK3, a Λ-polarized (marked) K3 is a marked K3
(X,Φ) such that under the isomorphism Φ : H2(X,Z) → ΛK3, we have Λ ↪→ Φ(NS(X)), and further that
under this inclusion, Λ contains an ample class of X. Given an arbitrary Λ, a K3 surface X is said to
admit a Λ-polarization if for some choice of marking, i.e. isomorphism, Φ : H2(X,Z) → ΛK3, the pair
(X,Φ) is a Λ-polarized marked K3.

Then we have the following difficult but quite amazing theorem:

Theorem 2.4.8 (Moduli Theory of K3 Surfaces). Let Λ be an even integral lattice of signature (1, s)
for some s ≥ 0. If Λ admits a primitive embedding into ΛK3, then given a fixed primitive embedding
Λ ↪→ ΛK3, the Λ-polarized K3 surfaces admit a local moduli space of dimension 19− s.

Proof. See [9, Thm. 10.1]. ■

This moduli space depends on choice of primitive embedding Λ ↪→ ΛK3 up to isometry, so when
Λ admits a unique primitive embedding into ΛK3 up to isometry (such as in cases covered by Theorem
1.2.6), there is a unique moduli space of Λ-polarized K3 surfaces (which we can then speak of without
explicitly mentioning the primitive embedding).

Example 2.4.9. In general, a polarized K3 surface of degree 2d (with d ≥ 1 an integer) is a pair (X,L)
where X is a K3 and L is a primitive ample line bundle with L2 = 2d. For any d ≥ 1 the rank-one lattice
Ξ2d with Gram matrix [2d] is an even lattice of signature (1, 0) and length 1, and hence by Theorem 1.2.6
admits a unique primitive embedding into ΛK3 upto isometry. Clearly, a marked polarized K3 surface of
degree 2d is the same as a Ξ2d-polarized K3 surface. The above theorem states that marked polarized
K3 surfaces of degree 2d admit a local moduli space of dimension 19 − 0 = 19. In fact, it is possible
to see directly what such a moduli space should be. Indeed, let Λ2d denote the orthogonal complement
of Ξ2d in ΛK3. Then it follows again from the Hodge-Riemann bilinear relations, that the period map
restricted to isomorphism classes of marked polarized K3 surface of degree 2d has image contained in
the hyperplane section D(Λ2d) := P(Λ2d ⊗C) ∩D(ΛK3) of the usual period domain. One can check that
the resulting scheme D(Λ2d) is still a smooth quasiprojective variety, and consequently of dimension 19.
This is the local moduli space referred to in the previous theorem.

Example 2.4.10. Now consider the hyperbolic plane U . This is an even unimodular lattice of signature
(1, 1) and length, and hence admits a unique primitive embedding into ΛK3 up to isometries by Theorem
1.2.6. Then Theorem 2.4.8 tells us that there is a unique local moduli space of U -polarized K3 surfaces
of dimension 18. We will see below that this is nothing but the space of (marked) elliptic K3 surfaces
(Theorem 3.2.4).

3 Elliptic K3 Surfaces

In this section we recall the basic theory of elliptic surfaces as in [1] and then prove our main result,
namely Theorem 3.2.4.

3.1 Introduction to Elliptic Surfaces

Recall that k is an algebraically closed base field.

Definition 3.1.1. Let C be smooth projective curve. A elliptic surface over C is a smooth projective
surface S with an elliptic fibration over C, i.e. a smooth surjective morphism

f : S → C

with connected fibers such that

(a) all but finitely many of the fibers of f are smooth curves of genus 1, and
(b) no fibre contains an exceptional curve of the first kind (i.e. a smooth rational curve of self inter-

section −1).

Further, by convention we require
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3 Elliptic K3 Surfaces

(c) that the fibration admits a section, i.e. there is a map σ : C → S with f ◦ σ = 1C , and
(d) the fibration has at least one singular fiber.

The condition (a) defines an elliptic fibration. Note that (−1)-curves arise naturally as excep-
tional divisors of blow-ups of surfaces at smooth point, so this condition (b) is a relative minimality
condition (which does not imply an absolute minimality condition if one forgets the fibration structure).
The condition (c) allows us to think of (almost all of) the fibers of f as not just genus 1 curves but rather
as elliptic curves, with the distinguished rational point for the fiber St for a t ∈ C(k) being σ(t). Finally,

the condition (d) is needed to exclude trivial fibrations S = C × E
π1−→ C with E an elliptic curve, for

which our finiteness results don’t usually hold.

Note that in this case, if K = k(C) is the function field of C, then the generic fiber of f , i.e.
the fiber Sη of f over the generic point η ∈ C of C, is also a genus 1 curve E over K equipped with the
K-rational point σ, and is hence an elliptic curve E/K. In general, sections of f correspond exactly to
K-rational points of E:

Proposition 3.1.2. The global sections of f are in bijective correspondance with E(K).

Proof Sketch. Given any section σ, define the point of E(K) by taking the image σ(C) and intersecting
it with Sη = E. Conversely, given a K-rational point P , consider its Zariski closure in S. This is a
curve Γ, since its function field is K, which has transcendence degree 1 over k. Restricting the fibration
f |Γ : Γ → C we get a finite, birational morphism onto the nonsingular curve C and so by Zariski’s main
theorem for curves, this f |Γ is an isomorphism. The inverse of f |Γ is then the required section. The
correspondence is easily seen to be bijective. For details, we refer to [1, Prop. 5.4]. ■

We can also go in the other direction:

Definition 3.1.3. Let E be an elliptic curve over the function field K of a curve C. If there is an elliptic
surface f : S → C whose generic fiber is isomorphic to E/K, then we say that f is a Kodaira-Néron
Model for E/K, call S the elliptic surface associated with E/K.

The Kodaira-Néron model is characterized by the following universal property: if S′ is another
projective surface and if f ′ : S′ → C has generic fiber E/K, then f ′ factors through f , i.e. there is a
morphism g : S′ → S such that f ′ = f ◦g. This is a statement of the relative minimality of Kodaira-Néron
models.

Proposition 3.1.4. Given an elliptic curve E/K, the Kodaira-Neron model exists and is unique up to
isomorphisms.

Proof Sketch. Take a generalized Weierstraß equation for E/K in P2
K that looks like

y2 + a1xy + a3y = x3 + a2x
2 + a4x+ a6.

Let Σ ⊂ C be a finite subset containing all the poles of the coefficients ai ∈ K = k(C) and the zeroes of
the discriminant ∆ of E/K. Let C◦ := C ∖Σ, and let S◦ ⊂ P2 ×C◦ be the open surface defined by the
above equation; the projection to C◦ is a smooth elliptic fibration. Let S̃ ⊂ P2×C be the Zariski closure
of S◦; this is a possibley singular surface, but its fibers over t ∈ Σ are either nodal or cuspidal curves,
being degenerations of elliptic curves. The singular points of S̃ are contained in the set of nodes and
cusps of nonelliptic fibers, and hence are finite in number. By resolving these, we get a smooth projective
surface S and a birational morphism S → S̃. The composition S → C may not be relatively minimal,
but by Castelnuovo’s Theorem, we can keep contracting the finitely many (−1)-curves to finally arrive at
an elliptic fibration S → C with generic fiber E/K. The uniqueness of the Kodaira-Néron model follows
from its universal property. Again, for full details we refer to [1, Thm. 5.19]. ■

This tells us that studying elliptic surfaces is equivalent to studying elliptic curves over function
fields of curves. We end this section with detailed example:

Example 3.1.5. Consider a pencil V 2 ⊂ H0(P2,OP2(3)) of plane cubics whose base locus consists of 9
distinct points, so that V contains smooth cubic curves. If f, g ∈ V are any two linearly independent
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3 Elliptic K3 Surfaces

elements, then the surface S ⊂ P2 × P1 defined by

S = V(sf + tg) ⊂ P2 × P1

where [s, t] are coordinates on the P1 is the blow-up of P2 at the nine points of the cubic pencil spanned
by f and g, and is in particular a smooth surface, whose projection onto the second factor gives an
elliptic fibration. Any base point of the pencil gives a section of this fibration, and the fibration clearly
has a singular fiber, since the discriminant of the curve sf + tg is a nonzero polynomial in s and t. When
we can show that no fibres contain (−1)-curves, this gives us an example of an elliptic surface over P1.
We’ll carry this out explicitly next.

Suppose now that char k ̸= 3, and take f = x3 + y3 + z3 and g = −xyz, so that S is defined by
the equation

s(x3 + y3 + z3)− txyz = 0.

It is easy to check that this pencil is singular, and hence the corresponding fiber of S singular, exactly
when s = 0 or t3 = 27s3, in both of which cases the fibers are “triangles”, i.e. three nonconcurrent lines
(this needs char k ̸= 3). We claim that if T denotes one of these lines, then T 2 = −2. From this it would
follow that the corresponding S → P1 is an elliptic fibration. Indeed, to show this, suppose that F is a
smooth fiber and F ′ is the singular fiber with F ′ = T + T ′ + T ′′. Then from F ∼ F ′, we conclude that

0 = (F, T ) = (F ′, T ) = T 2 + (T, T ′) + (T, T ′′) = T 2 + 2

because (T, T ′) = (T, T ′′) = 1. The result follows. An explicit computation of the Kodaira-Néron Model
of this surface can be found in [1, Example 5.24].

We end with computing the self-intersection of any section with respect to the invariant χ(S,OS).
For this we need:

Theorem 3.1.6 (Canonical Bundle Formula). The canonical bundle of an elliptic surface f : S → C is
given by

ωS = f∗(ωC ⊗L−1)

where L is some line bundle of degree −χ(S,OS) on C. In particular, we have

KS ≡ (2g(C)− 2 + χ(S,OS))F and K2
S = 0.

Proof. See [1, Thm. 5.44] for a proof sketch and references to the complete proof. ■

In the theory of elliptic K3 surfaces, this can be circumvented by noting (Lemma 3.2.1) that
ellpitic K3 surfaces must have base curve P1, and then working with minimal Weierstraß models to
prove this directly (see [1, Ch. 5]). We will content ourselves with quoting it and noting the following
consequence:

Corollary 3.1.7. Let f : S → C be an elliptic surface. Then given any section σ : C → S, or
equivalently P ∈ E(K), if we denote by P also the corresponding divisor on S, then P 2 = −χ(S,OS).

Proof. First note that P is a smooth curve. Next, the adjunction formula gives us

2g(C)− 2 = 2g(P )− 2 = P 2 + P ·KS = P 2 + 2g(C)− 2 + χ(S,OS),

where in the last step we have used P · F = 1. ■

3.2 Main Theorem

Given our discussion so far, a natural question to ask is: when does a K3 surface X admit a elliptic
fibration? The first thing to say about this is:

Lemma 3.2.1. Suppose we have a surjective morphism π : X → C from a K3 surface X to a smooth
projective curve C. Then C ∼= P1.
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3 Elliptic K3 Surfaces

Proof. The Leray Spectral Sequence for this map and the sheaf OX on X has Ep,q
2 = Hp(C, (Rqπ∗)OX)

and converges to Ep+q
∞ = Hp+q(X,OX). Since C is a curve, this spectral sequence degenerates already

at the second page, and we get an embedding H1(C, π∗OX) ↪→ H1(X,OX). Since X and C are smooth,
it follows that π∗OX = OC . Since X is a K3, we have H1(X,OX) = 0, and it follows that H1(C,OC) = 0
and hence g(C) = h1(C,OC) = 0 as well. ■

It follows from this that if π : X → C is an elliptic K3 surface, then for any fiber P ∈ E(K),
we have P 2 = −χ(X,OX) = −2 (using Theorem [to cite] and χ(X,OX) = 2 proven above). Therefore,
a necessarily condition for a K3 surface to admit an elliptic surface structure is the existence of a (−2)-
curve, which is then automatically smooth and rational by §2.2. Therefore, it makes sense to study
(−2)-divisors on X, which we now do.

Lemma 3.2.2. Let X be a K3 surface and let D be a divisor. If D2 ≥ −2, then either D or −D is
effective.

Proof. By Proposition 2.1.2, we have D2 = 2χ(X,D)− 4, so that D2 ≥ −2 implies χ(X,D) > 0, which
implies that h0(X,D) + h2(X,D) > 0. Since h2(X,D) = h0(X,KX −D) = h0(X,−D) by Serre duality,
it follows that at least one of h0(X,D) or h0(X,−D) is positive. Finally, a divisor D is effective iff
h0(X,D) is positive. ■

Lemma 3.2.3. Let D be an effective divisor on a K3 surface X satisfying D2 = −2. Then D is
supported on (−2)-curves, i.e. there is an integer r ≥ 1 and (−2)-curves C1, . . . , Cr ⊂ X and integers
m1, . . . ,mr ∈ X such that D =

∑r
i=1 miCi.

Proof. Fix a polarization (i.e. projective embedding) of X so we may talk of degrees of divisors. Write
D =

∑
C mCC, where the C are reduced and connected curves and mC ≥ 0 by effectiveness. Then

D2 < 0 implies there is some C1 with mC1
> 0 such that D · C1 < 0, and from this it follows that in

fact C2
1 < 0. Consequently, C2

1 = −2. Let D1 := D+ (D ·C1)C1; this amounts to reflection in C1. Then
D2

1 = D2. Then D1 is a nonzero divisor with D2
1 ≥ −2, so by the previous lemma, either D1 or −D1 is

effective. If D1 is effective, then deg(D1) < degD, and so we many induct on degree to deal with this
case. The only case that remains to be done is when D1 is antieffective. We claim that in this case we
have deg(−D1) ≤ degD. To show this, write

D =
∑

C ̸=C1

mCC +mC1
C1 and so D1 =

∑
C ̸=C1

mCC + (mC1
+ (D · C1))C1.

Next, note that

D · C1 =
∑

C ̸=C1

mC(C · C1)− 2mC1

with each (C · C1) for C ̸= C1 being positive. It follows that

deg(−D1) = −
∑

C ̸=C1

mC deg(C) + (−(D · C1)−mC1) deg(C1)

≤ 0 + (mC1 −
∑

C ̸=C1

mC(C · C1)) deg(C1)

≤
∑

C ̸=C1

mC deg(C) +mC1 deg(C1) = deg(D).

Next, notice that −D1 and D have completely symmetric roles to conclude that also deg(D) ≤
deg(−D1) and so equality must hold everywhere, and consequently mC = 0 for all C ̸= C1, i.e. D =
mC1

C1. Further, since D2 = −2, it follows that mC1
= 1 as well, so that in this case we simply get that

D = C1, completing the proof.

■

Theorem 3.2.4. Let X be an complex algebraic K3 surface. Then the following are equivalent:

(a) X is an elliptic surface.
(b) X admits divisors D and F with D2 = 0, D · F = 1, and F 2 = 0.
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(c) X admits a U -polarization.

Proof.

(a) ⇒ (b) Let P be a section and F be a fiber. It suffices to take D = P + F .
(b) ⇔ (c) This is immediate, since the sublattice spanned by D and F is exactly U , and primitivity of the

embedding is a consequence of D · F = 1.
(b) ⇒ (a) We give a detailed sketch. By Lemma 3.2.2, we conclude that D or −D is effective. By D · F = 1,

it follows that D is primitive in NS(X). Then linear system |D| may still contain nonempty
base locus, but this base locus consists exclusively of (−2)-curves by the same reasoning as in the
previous lemma, and so they can be eliminated by successive reflections in (−2)-curves as above,
with the degree dropping at each stage. Therefore, this procedure stops after finitely many steps.
Let s be the procedure so applied, and let D′ := s(D). Then D′ is isotropic and effective such
that |D′| is basepoint free. Then it remains to check that h0(X,D′) = 2, and the resulting map
π = φ|D′| : X → P1 is a genus one fibration, i.e. satisfying condition (a) in the definition of an
elliptic fibration. Since K3 surfaces are globally minimal (Proposition 2.2.1(a)), it follows that (b)
is automatic. Since D′ is primitive, it features as one of the singular fibres of this fibration; it
follows that (d) is satisfied. It remains to show (c), i.e. that this fibration admits a section. Next,
set F 2 = 2r with r ∈ Z, and define F ′ =: s(F )− (r + 1)D′. Then (F ′)2 = −2 and F ′ ·D′ = 1. By
Lemma 3.2.2, F ′ is either effective or anti-effective, so F ′ ·D′ = 1 and D′ effective implies that F ′

is also effective. By Lemma 3.2.3, F ′ =
∑r

i=1 miCi for some mi > 0 and (−2)-curves Ci. Since D′

is a fiber, it is in particular nef, so we deduce from F ′ ·D′ = 1 that F ′ is simply a (−2)-curve C,
which is a smooth rational curve. It follows that the fibration given by |D′| admits the section C,
satisfying (c).

■

The key point here is the X admits an genus one fibration iff there is a nonzero D such that
D2 = 0, and then it admits a section iff there is additionally an F meeting D once. There are also
examples of K3 surfaces admitting genus one fibrations but not sections, and therefore not fitting into
our definition; the Fermat quartic surface V(x4 + y4 + z4 + w4) ⊂ P3

C is one (see [1, Example 11.30]).
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