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Abstract

This paper is written in fulfillment of the requirements of a Math 91R (supervised reading and research)
course offered at Harvard during the spring of 2022 on symplectic geometry by Prof. Denis Auroux. In this
paper, I give explicit computations of moment maps for several examples, explain the thoery of symplectic
reduction, and compute a couple of concrete examples of reduced spaces. The primary reference for these
examples is Homework 19 and 20 from da Silva’s Lectures on Symplectic Geometry [1].
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1 Introduction to Hamiltonian Actions and Noether’s Theorem
In this section, we present the basic definitions and the modern mathematical formulation of Emmy Noether’s
theorem relating symmetries and integrals of motion. We follow [1], Chapter 22 and Section 24.1.

Definition 1. Let (M,ω) be a symplectic manifold, G be a Lie group, g its Lie algebra, and g∗ = HomR(g,R) its
dual. A smooth action ρ : G → Symp(M,ω) of G on M by symplectomorphisms is called Hamiltonian if there
is a smooth map

µ : M → g∗

called the moment map such that
• for each X ∈ g, the smooth map µX : M → R given by µX (p) := ⟨µ(p),X⟩ for p ∈ M is a Hamiltonian

function for the vector field X on M which is the infinitesimal generator of the 1-parameter subgroup
{ρ(exp tX)}t∈R of symplectomorphisms of M, i.e. that X ⌟ω = dµX , and

• the map µ is G-equivariant for ρ and the coadjoint action on g∗.
This setup (M,ω,G,ρ,µ) is called a Hamiltonian G-space.

Note that when G = R or S1, then this recovers the definition of a Hamiltonian function. There are various
ways of formulating the equivariance condition. It says that for any p ∈ M and g ∈ G, we have

µ(gp) = Ad∗g µ(p),

or equivalently that for any g ∈ G and Y ∈ g we have that

µ
Adg Y = µ

Y ◦g−1.

Taking g = exp(tX) for some X ∈ g and differentiating at t = 0, we conclude that for all X ,Y

µ
[X ,Y ] = µ

adX Y =−Xµ
Y =−X ⌟Y ⌟ω = ω(X ,Y ) = {µ

X ,µY }.

The map µ∗ : g→ C ∞(M) given by X 7→ µX has therefore the property that
• for each X ∈ g, the function µX is Hamiltonian for X , and
• the map µ∗ is a Lie algebra homomorphism for the Lie bracket on g and the Poisson bracket on C ∞(M).
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2 A Plethora of Examples

Such a map is called a comoment map. We have shown that a moment map gives rise naturally to a comoment
map. The converse is also true, at least when G is connected. Since we will not really need this, we refer the
reader to [2], Lemma 5.2.1 for a proof.

Here we make two simple observations, whose proofs are immediate, and which will be handy below.

Observation 1. If (M,ω,G,ρ,µ) is a Hamiltonian G-space, and H ⊂ G an (embedded) Lie subgroup, then
(M,ω,H,ρ|H , res◦µ) is a Hamiltonian H-space, where res : g∗ → h∗ is simply the restriction map.

Observation 2. If (Mi,ωi,G,ρi,µi) are Hamiltonian G-spaces for a fixed G and i = 1, . . . ,n, then(
∏

i
Mi,∑

i
pr∗i ωi,G,γ ◦∏

i
ρi ◦∆,∑

i
µi ◦pri

)
is a Hamiltonian G-space, where ∆ : G → Gn is the diagonal embedding, and γ is the obvious map

∏
i

Symp(Mi,ωi) ↪→ Symp(∏
i

Mi,∑
i

pr∗i ωi).

Symplectic geometry has its origins in the study of classical mechanics, in which Emmy Noether’s theorem
is a fundamental theorem relating symmetries and integrals of motion of a physical system. The modern formu-
lation of Noether’s Theorem relates G-invariance of smooth functions f : M → R to the values of the moment
map µ on the trajectories of the Hamiltonian vector field X f of f (which, as the reader will recall, is defined
uniquely by X f ⌟ω = d f ).

Theorem 1 (Noether’s Theorem). Let (M,ω,G,ρ,µ) be a Hamiltonian G-space. If a smooth function f : M →R
is G-invariant, then µ is constant along the trajectories of the Hamiltonian vector field X f of f . The converse
holds if G is connected.1

Proof. This follows from the Cartan’s magic formula computation

LX f µ
X = X f ⌟dµ

X = X f ⌟X ⌟ω =−X ⌟X f ⌟ω =−X ⌟d f =−LX f

for any X ∈ g. Therefore, if f is G-invariant, then LX f = 0 for all X ∈ g and hence LX f µX = 0 for all X ∈ g,
proving that µ is constant along the trajectories of X f . Conversely, if µ is constant along the trajectories of X f ,
then LX f µX = 0 for all X , so that LX f = 0 for all X . Therefore, the proof follows from the following lemma:

Lemma 1. Let G be a connected Lie group acting smoothly a manifold M. Then a function f : M → R is
G-invariant iff LX f = 0 for all X ∈ g.

Proof. One direction is clear; for the other, take Z := {g ∈ G : ∀ p ∈ M, f (gp) = f (p)} ⊂ G. Clearly e ∈ Z, the
subset Z is closed, and has the property that if U ⊂ Z is any subset, then for all g ∈ Z we have gU ⊂ Z. Therefore,
it suffices to show that Z contains a neighborhood of e. We know that the exponential map exp : g→ G maps a
neighborhood V of 0 diffeomorphically onto a neighborhood U of e in G. We claim that U ⊂ Z. Indeed, take
g ∈U so that g = exp(X) for some X ∈V . Define a function h : R×M → R by (t, p) 7→ f (exp(tX)p). Then for
all (t, p) we have h(t +ε, p) = h(ε,exp(tX)p)+h(t, p), so that ∂th|(t,p) = LX ( f )(exp(tX)p) = 0 by hypothesis.
This implies that ∂t ⌟ dh = 0, so that h is constant along the trajectories of ∂t . In particular, for any p ∈ M, we
have that f (gp) = f (exp(1X)p) = f (p) as needed. ■

■

Definition 2. Let (M,ω,G,ρ,µ) be a Hamiltonian G-space.
• An integral of motion of this Hamiltonian G-space is a smooth G-invariant function f : M → R.
• A symmetry of this Hamiltonian G-space is the one parameter subgroup of diffeomorphisms corresponding

to a Hamiltonian vector field X , along whose trajecories the moment map is constant.

The Noether principle asserts that (at least when G is connected), there is a bijection between integrals of
motion and symmetries of a Hamiltonian G-space.

2 A Plethora of Examples
These examples are taken from Homework 19 of [1]. A general class of examples is related to the following
observation:

1The reference [1] in Theorem 24.1 does not mention the connectedness assumption, but it is in fact necessary. For a counterexample
when G is not connected, take G = R2 ×{±1} acting on M = G, i.e. itself by left multiplication. Then G acts by symplectomorphisms for
ω := p∗1(dx∧dy), and we may consider the function f : G

p2−→ {±1} ↪→ R, where pi denotes projection onto the ith factor for i = 1,2. Then it
is easy to see that this action is Hamiltonian, and of course any µ is constant along the trajectories of the vector field X f = 0, but f is clearly
not G-invariant, since G acts on itself transitively and f is not constant.
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2 A Plethora of Examples

Observation 3. If a Lie group G acts smoothly on a manifold M, then G acts smoothly on its tangent bunlde
T M by the formula (g,(q,v)) 7→ (gq,dgqv) and on its cotangent bundle2 T ∗M by (g,(q, p)) 7→ (gq, tdg−1

q p). If
ω = dqi ∧dpi is the canonical symplectic form on T ∗M, then its pullback under the G-action that arises as above
is given in local coordinates by g∗ω = d

(
q jg
)
∧ (tdg−1

q )i
jdpi.

Example 1. Consider the action of G = Rn on M = Rn by translations; this gives rise to an action on the
cotangent bundle (T ∗M,ω) by (t,(q, p)) 7→ (q+ t, p), and this is clearly an action by symplectomorphisms.
Here, g = R⟨ ∂

∂ t i ⟩, and g∗ = R⟨dt i⟩. If X = λ i ∂

∂ t i ∈ g, then the vector field X = λ i ∂

∂qi and X ⌟ω = λ idpi.

Therefore, if we take µ : M → g∗ to be given by µ(q, p) = pidt i, then µX (q, p) = λ i pi and dµX = λ idpi = X ⌟ω .
Since G is abelian, the Ad-equivariance condition simply becomes G-invariance, which this µ certainly satisfies.
It follows that this action is Hamiltonian with moment map µ .

Example 2. Consider the standard action of G = SOnR on M = Rn; this gives rise to an action on the tangent
bundle T M as explained above. In local coordinates (q,v), this action is given simply by (g,(q,v)) 7→ (gq,gv).

Now we use the tangent-cotangent isomorphism given by the Euclidean inner product on Rn to produce a
symplectic form on T M corresponding to the canonical form on T ∗M; in local coordinates (qi,vi), this is given
by3 ω = ∑i dqi ∧dvi. It follows that for g ∈ SOnR, we have

g∗ω = ∑
i, j,k

gi
jdqi ∧gi

kdvk = ∑
j,k

(
∑

i
gi

jg
i
k

)
dq j ∧dvk.

But now since g ∈ SOnR, we have that ∑i gi
jg

i
k = ∑i(gt)

j
i gi

k = (gtg) j
k = δ

j
k , and we conclude that g∗ω = ω .

Therefore, this is an action by symplectomorphisms.
The Lie algebra g = sonR = {X ∈ glnR : X + tX = 0} and the dual g∗ = so∗nR = R⟨dxi

j⟩/⟨dxi
j + dx j

i ⟩. If

X = (X i
j) ∈ sonR, then the vector field X = ∑i, j

(
X i

jq
j ∂

∂qi +X i
jv

j ∂

∂vi

)
, so that X ⌟ω = ∑i, j,k Xk

j (q
jdvk − v jdqk).

Therefore, if µ : TRn → so∗nR is the map given by µ(q,v) = ∑ j<k dxk
j(q

jvk −v jqk), then µ satisfies that X ⌟ω =

dµX for all X ∈ sonR. The checking of Ad-invariance is reduced to showing that for all g∈ SOnR, and X ∈ sonR
and (q,v) ∈ TRn we have that µgXg−1

(q,v) = µX (g−1q,g−1v), which is straightforward but tedious and hence
omitted. It follows that the action of SOnR on TRn is Hamiltonian with moment map µ .

In the previous two examples, we see that the actions of Rn by translations and SOnR by rotations on Rn

gives rise to momentum maps which are basically the classical linear and angular momentums respectively. This
is the origin on the term “moment map”.

Example 3. Fix4 an n-tuple of integers k := (k1, . . . ,kn), and consider the action ρk of Tn on Cn by

(t1, . . . , tn) · (z1, . . . ,zn) = (tk1
1 z1, . . . , tkn

n zn).

If Cn is given the usual symplectic form ω = i
2 ∑i dzi ∧ dzi = ∑i ridri ∧ dθi, then any fixed t ∈ Tn acts only by

shifting the θi linearly and hence acts as a symplectomorphism. Note that the Lie algebra tn =R⟨ ∂

∂ ti
⟩ and (tn)∗ =

R⟨dt i⟩. If X = ∑i vi
∂

∂ ti
∈ tn, then the vector field X = −∑i viki

∂

∂θi
, and so X ⌟ω = −∑i vikiridri. Therefore, if

µk : Cn → (tn)∗ is given by µk(z1, . . . ,zn) = − 1
2 ∑i ki|zi|2dti +C for any constant C ∈ (tn)∗, then µk satisfies

that for any X ∈ tn we have X ⌟ω = dµX
k ; it is also clearly Tn-invariant (and hence Ad-equivariant since Tn is

abelian), and therefore this action is Hamiltonian with moment map µk.

Example 4. Consider the Hamiltonian Tn-space (Cn,ω,Tn,ρk,µk) of the previous example. Note that the
diagonal map ∆ : S1 = T1 → Tn gives an embedded Lie subgroup of Tn; the restriction map (tn)∗ → t∗ is given
simply by sending each dti 7→ dt. Now using the first observation above, we conclude that we get a Hamiltonian
S1-space (Cn,ω,S1,ρk|S1 , res◦µk), where unpacking the definition shows that the moment map res◦µk : Cn → t
is the map (z1, . . . ,zn) 7→

(
− 1

2 ∑i ki|zi|2
)

dt +C for any C ∈ t∗. In particular, taking k = (1, . . . ,1), the action
of S1 on Cn by left multiplication is Hamiltonian with moment map µ : Cn → t ∼= R given by (z1, . . . ,zn) 7→
− 1

2 ∑i |zi|2 +C for any constant C ∈ R. It is often convenient (as we shall see below in Example 8) to take
C = 1/2.

Example 5. Consider the standard action of G = Sp2nR on (R2n,ωstd) (where ωstd(v,w) = vtJw for J =[
0 − idn

idn 0

]
the usual almost complex structure), which is an action by symplectomorphisms by definition.

We know that g= sp2nR= {X ∈ glnR : X tJ+ JX = 0}. Consider the map µ : R2n → sp∗2nR given by

µ(v) : X 7→ −1
2
(Xv)tJv.

2Here, we put the letter t denoting transpose on the left to avoid a cluttering or too many parentheses.
3In this example only, Einstein summation convention gets a little wonky because of the Euclidean inner product, so we’ll write down the

summation symbols explicitly.
4In this example and the next one, for the sake of clarity, we ditch the Einstein convention.
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3 Marsden-Weinstein-Meyer Reduction

To see that this is the moment map, note that given an X ∈ sp2nR, the vector field X = (Xv)t∂v, where ∂v is
shorthand for the obvious column matrix. We further have from direct calculation that ∂v ⌟ω = −Jdv, where
similarly dv is the obvious column matrix. Therefore, X ⌟ω =−(Xv)tJdv. On the other hand, we also have that

dµ
X =−1

2
(
(Xdv)tJv+(Xv)tJdv

)
.

But now
(Xdv)tJv = ((Xdv)tJv)t = vtJtXdv = vt(−JX)dv = vtX tJdv = (Xv)tJdv,

where in the third equality we have used that −JX = X tJ since X ∈ sp2nR; therefore, the two terms are exactly
the same and we get that

dµ
X =−(Xv)tJdv = X ⌟ω

as needed. Finally, we need to check Ad-equivariance, which follows from the computation that if g ∈ Sp2nR,
and Y ∈ sp2nR and v ∈ R2n, then we have that

µ
Adg Y (v) = µ

gY g−1
(v) =−1

2
(gY g−1v)tJv =−1

2
(Y g−1v)tgtJv =−1

2
(Y g−1v)tJg−1v = µ

Y (g−1v),

where in the fourth equality we have used that gtJ = Jg−1 since g ∈ Sp2nR.

Example 6. Consider the standard action of Un on (Cn,ωstd); this is in fact a Kähler action almost by definition
of Un, and so certainly symplectic. We use the usual identification of Cn with R2n and GLnC ↪→ GL2nR. Under
these identificaitons, we know that Un ↪→ Sp2nR, and so Observation 1 tells us that the action of Un on Cn is
Hamiltonian with the (co)moment map given by the same formula. There is in fact a better way to express this.

Note that

un = {X ∈ glnC : X +X† = 0} ∼=
{[

V −W
W −V

]
∈ gl2nR : V +V t =W −W t = 0

}
,

with the identification given by writing X =V + iW as usual. Therefore, if we write v =
[

x
y

]
, then

µ(X ,v) =−1
2
[
xt yt][ 0 − idn

idn 0

][
V −W
W −V

][
x
y

]
=

1
2
(xtWx+ ytWy)+ xtV y,

where we have used that ytV x = (ytV x)t = xtV ty =−xtV y. But now if v corresponds to z = x+ iy, then we also
have that

− i
2

tr
(

zz†X
)
=− i

2
(z†Xz) =− i

2
(xt − iyt)(V + iW )(x+ iy) =

1
2
(xtWx+ ytWy)+ xtV y,

where in the simplification we have used that xtV x = ytV y = 0 because V =−V t . These are identical formulae.
Therefore, we have shown that the action of Un on (Cn,ωstd) is Hamiltonian with moment map µ :Cn → un given
by µ(z) =− i

2 zz†, where we have implicitly identified un with its dual using the inner product ⟨A,B⟩= tr
(
A†B

)
.

Example 7. Now consider the action of Uk on (Ck×n,ωstd) by left multiplication; this is again a Kähler action
by symplectomoprhisms. Then a moment’s thought shows that if we use the previous example, then we are
in the situation of Observation 2, so this action is Hamiltonian with moment map µ : Ck×n → uk given by
µ(A) =− i

2 AA† +C for any C ∈ uk. As before, we will choose C = i
2 idn, for reasons that will become clearer in

Example 9 below.

3 Marsden-Weinstein-Meyer Reduction
In this section, we follow [1], Chapter 23. The idea behind Marsden-Weinstein-Meyer reduction is that in a
Hamiltonian G-space, we can under certain hypotheses reduce the degrees of freedom of the system by 2dimG
“without affecting the physics”. This is captured precisely by the following theorem.

Theorem 2. Let (M,ω,G,ρ,µ) be a Hamiltonian G-space for a compact Lie group G. Assume that G acts freely
on µ−1(0). Then

• 0 is a regular value of µ , so that µ−1(0)⊂ M is an embedded submanifold,
• the orbit space Mred = µ−1(0)/G is a manifold and the map π : µ−1(0)→ Mred a principal G-bundle, and
• there is a symplectic form ωred on Mred such that ω|µ−1(0) = π∗ωred.

Proof. To prove this, we first need a lemma to understand the differential dµX a little better.

Lemma 2. Let (M,ω,G,ρ,µ) be a Hamiltonian G-space with G compact. Then for any p ∈ M, the stabilizer
Gp ⊂ G is a closed subgroup, and hence an embedded Lie subgroup. If gp ⊂ g is its Lie algebra, then the map
dµp : TpM → g∗ has

kerdµp = (TpOp)
ωp and imdµp = Anngp,

where Op is the orbit of p, which is an embedded submanifold diffeomorphic to G/Gp.
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Proof. For all p ∈ M, v ∈ TpM and X ∈ g, we have that ωp(X p,v) = ⟨dµp(v),X⟩. Since TpOp = {X p : X ∈ g},
it follows immediately that kerdµp ⊂ (TpOp)

ωp . Similarly, if X ∈ gp, then X p = 0, so that imdµp ⊂ Anngp.
Therefore, we get that

dimM = dimTpM = dimkerdµp +dimimdµp ≤ (dimM−dimG/Gp)+(dimg−dimgp) = dimM,

so we must have equality everwhere. ■

It follows that for a given p ∈ M, the following are equivalent:
• the action is locally free at p,
• the stabilizer Gp is discrete,
• the algebra gp = 0,
• the differential dµp is surjective, and
• p is a regular point of µ .

In particular, if G acts freely on µ−1(0), then 0 is a regular value of µ , and so µ−1(0) is a closed embedded
submanifold of codimension equal to dimG. We also know from elementary differential topology that in this
case we have Tpµ−1(0) = kerdµp, so that Tpµ−1(0) and TpOp are symplectic orthogonal complements in TpM.
By Ad-equivariance, it follows that Op ⊂ µ−1(0), so that TpOp is an isotropic subspace of TpM. In particular,
the orbits in µ−1(0) are isotropic. Now we need some linear algebra:

Lemma 3. Let (V,ω) be a symplectic vector space and W ⊂V isotropic. Then ω induces a caonical symplectic
form ωred on W ω/W such that if π : W ω →W ω/W is the projection, then π∗ωred = ω|W ω .

Proof. For [u], [v] ∈W ω/W , lift to u,v ∈W ω and define ωred([u], [v]) := ω(u,v). All properties follow immedi-
ately. ■

Finally, from standard differential geometry, since G acts freely and properly on µ−1(0) and µ−1(0) is
a manifold, we know that Mred = µ−1(0)/G is a manifold with the map π : µ−1(0) → Mred a principal G-
bundle. In the lemma we take (V,ω) = (TpM,ωp) and the subspace W = TpOp; then W ω = Tpµ−1(0). Since
Mred = µ−1(0)/G, it follows immediately that for any [p] ∈ Mred we have that Tpµ−1(0)/TpOp →∼ T[p]Mred.
The lemma gives us a canonical symplectic form ωred,p on T[p]Mred, and this is independent of the choice of p
because of the G-equivariance of ω . Therefore, we have produced a nondegenerate 2-form ωred on Mred that
clearly satisfies π∗ωred = ω|µ−1(0) by construction. Now, we have that π∗dωred = dπ∗ωred = dω|µ−1(0) = 0 and
so dωred = 0 because π∗ is injective. This completes the proof that (Mred,ωred) is symplectic. ■

Remark 1. The same proof applies when G is possibly noncompact but acts freely and properly on µ−1(0);
then we have to be only a little more careful, because G/Gp →∼ Op ⊂ M is only an injective immersion and not
necessarily an embedding. An explanation can be found in [2], Section 5.4.

4 A Couple of Examples
Example 8. Consider the action of S1 on (Cn+1,ωstd) by left multiplication. As explained in Example 4, this is
Hamiltonian with moment map µ : Cn → t∼=R given by µ(z) =− 1

2 |z|
2 + 1

2 . Therefore, the preimage µ−1(0) =
S2n+1 ⊂ Cn+1. Since S1 is compact and acts freely on S2n+1, we conclude that the orbit space Mred = S2n+1/S1

is a principal S1-bundle; this is nothing but S1 → S2n+1 → CPn. The reduced form ωred on CPn is called the
Fubini-study form ωFS, which also admits several other definitions, notably as the image of i

2 ∂∂ log |z|2 on Cn+1.

Example 9. Consider the action of Uk on (Ck×n,ωstd) by left multiplication. In Example 7, we showed that
this is Hamiltonian with moment map µ : Ck×n → uk given by µ(A) = − i

2 AA† + i
2 idk under the identification

specified. Therefore, the preimage µ−1(0) = {A ∈ Ck×n : AA† = idk}. The condition AA† = idk means exactly
that the rows of the matrix A are orthonormal with respect to the usual Hermitian inner product on Cn. In
particular, A has maximal rank. From this it follows that the action of Uk is free: indeed, in any A, there is a
k× k-minor which has full rank, and this minor is witness to an element of g ∈ Uk (not) being the identity idk.
Therefore, we are in the situation of the previous theorem. It follows immediately that the quotient µ−1(0)/Uk
is nothing but the Grassmannian GrC(k,n) of k-planes in Cn; it follows that this has dimGrC(k,n) = dimCk×n −
2dimUk = 2kn−2k2 = 2k(n−k) as expected. In fact, here the action is Kähler, and we can check that this gives
GrC(k,n) the structure of not just a symplectic but a Kähler quotient.
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