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Abstract

We talk about Jacobians of compact Riemann surfaces, and then apply the theory to modular
curves to deduce that the Hecke algebra over the integers is finitely generated, and to explain what
the number field of a normalized eigenform is. We then briefly touch on how this relates to abelian
varieties and modularity.
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1 Introduction to Jacobians

1 Introduction to Jacobians

1.1 First Definitions

Let X be a compact Riemann surface. By the classification theorem for compact orientable 2-manifolds
without boundary, X is a sphere with g handles for some integer g ≥ 0, the genus of X . For g ≥ 1, we
describe the standard identified polygonal representation of X . Let ∆ be a polygon of 4g sides, labeled
in counterclockwise order as ai,bi,a′i,b

′
i for i = 1, . . . ,g. Direct these ai,bi counterclockwise and a′i,b

′
i

clockwise. Then X is isomorphic to the quotient of ∆ by identifying the sides ai with a′i and bi with b′i
according to the directions specified. Since all the vertices of ∆ are identified to a single point, the ai and
bi become piecewise C∞ cycles in X . Then it is a theorem in homology that:

H1(X ;Z) =
g⊕

i=1

Z[ai]⊕
g⊕

i=1

Z[bi]∼= Z2g.

(If g = 0, the direct sums above are understood to be empty.) For a proof, see any book on algebraic
topology, for instance [1] Chapters 10 and 13 or [2] §2.2.

The following discussion is based on [3] Chapter VIII §1, 4, and [4] Chapters 14 and 15. If σ

is a closed C∞ 1-form on X and D⊆ X has a piecewise C∞ boundary ∂D, then by Stokes’ Theorem,∫
∂D

σ =
∫∫

D
dσ =

∫∫
D

0 = 0,

so that the integral of a closed form around a boundary is zero. This means that the integral of a
closed form along a cycle depends only on the homology class of the cycle. Now let Ω1(X) denote the
space of holomorphic differential 1-forms on X . It follows from the Cauchy-Riemann equations that
every holomorphic 1-form ω ∈ Ω1(X) is closed. Since H1(X ;Z) is generated by piecewise C∞ cycles
{[ai], [bi]}, we get a bilinear pairing:

Ω
1(X)×H1(X ;Z)→ C, (ω, [γ]) 7→

∫
γ

ω.

This induces a map
∫
−

: H1(X ;Z)→Ω
1(X)∨. Let

Π :=
∫
−

H1(X ;Z)⊆Ω
1(X)∨

denote the image of this map; any element of Π is called a period.

Definition 1.1.1. Let X be a compact Riemann surface. The Jacobian of X is defined as the quotient
group Jac(X) := Ω1(X)∨/Π of functionals on the space of holomorphic 1-forms on X modulo the peri-
ods.

In this paper, we build the theory of Jacobians of compact Riemann surfaces, and then spe-
cialize to the case of modular curves to deduce nontrivial facts about the algebra of Hecke and diamond
operators by interpreting them geometrically.

Example 1.1.2. Let X = P1
C be the Riemann sphere, so that g = 0. We show that Ω1(X) is trivial.

Let ω ∈ Ω1(X), and write ω = f (z)dz = −w−2 f (1/w)dw. Since every meromorphic function on X is
rational (c.f. [3] Chapter II Theorem 2.1), f is a rational function. Since we want it to have no poles in
C, f must be polynomial, but then ω has a pole at ∞ of order at least two, unless ω ≡ 0. This shows that
Ω1(X) is trivial, and therefore so is Jac(X).

Note that for any compact Riemann surface X , the Jacobian Jac(X) is an abelian group. It is
trivial in the case g = 0, but as we shall see in the next section, for g ≥ 1, Jac(X) is nontrivial and we
have a much better description of Jac(X) as a g-dimensional complex torus.
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1 Introduction to Jacobians

1.2 Integration is Perfect

Assume now that g≥ 1. For any σ a closed C∞ 1-form on X and i = 1, . . . ,g, let

Ai(σ) :=
∫
[ai]

σ and Bi(σ) :=
∫
[bi]

σ .

For a fixed σ , these 2g numbers care called the periods of σ . Now, let π : ∆→ X denote the projection
map; note that this is 1− 1 away from ∂∆. Then we can pull any σ on X back to π∗σ on ∆. Since
pullbacks commute with the exterior derivative, we have

dπ
∗
σ = π

∗dσ = π
∗0 = 0,

so that π∗σ is closed. Choose a base point p0 ∈ ∆◦ and for p ∈ ∆ define:

fσ (p) :=
∫ p

p0

π
∗
σ ,

where the integral is taken over any path that lies completely in ∆. Since π1(∆) = 0 and π∗σ is closed,
this map is well-defined and independent of choice of path. Note that by the Fundamental Theorem of
Calculus, we have that d fσ = π∗σ . In particular, fσ is holomorphic if σ is. Then we have the following
fundamental result:

Lemma 1.2.1. Let σ ,τ be closed C∞ 1-forms on X . Then
∫

∂∆

fσ π
∗
τ =

g

∑
i=1

Ai(σ)Bi(τ)−Ai(τ)Bi(σ).

Proof. For any p ∈ ai and p′ ∈ a′i corresponding to the same point on X , let αp denote a path in ∆ from
p to p′. Then αp is homotopic to bi, so that

fσ (p)− fσ (p′) =
∫ p

p0

π
∗
σ −

∫ p

p0

π
∗
σ =−

∫
αp

π
∗
σ =−

∫
bi

π
∗
σ =−Bi(σ).

Similarly, for any q ∈ bi and q′ ∈ b′i, if βq is a path from q to q′, then βq is homotopic to a′i. But now, by
the change of variables formula, we have that∫

a′i
π
∗
σ =

∫
π(a′i)

σ =
∫
−π(ai)

σ =−
∫

π(ai)
σ =−

∫
ai

π
∗
σ ,

so that
fσ (q)− fσ (q′) =−

∫
βq

π
∗
σ =−

∫
a′i

π
∗
σ =

∫
ai

π
∗
σ = Ai(σ).

Since τ is a 1-form on X , the values of π∗τ along ai and a′i are equal, so that:∫
∂∆

fσ π
∗
τ =

g

∑
i=1

(∫
ai

−
∫

a′i
+
∫

bi

−
∫

b′i

)
fσ π

∗
τ

=
g

∑
i=1

∫
p∈ai

(
fσ (p)− fσ (p′)

)
π
∗
τ +

∫
q∈bi

(
fσ (q)− fσ (q′)

)
π
∗
τ

=
g

∑
i=1
−Bi(σ)Ai(τ)+Ai(σ)Bi(τ).

�

Corollary 1.2.2. If 0 6= ω ∈Ω1(X), then Im∑
g
i=1 Ai(ω)Bi(ω)< 0. In particular, if ω ∈Ω1(X) such that

Ai(ω) = 0 for all i = 1, . . . ,g, then ω = 0. The same conclusion holds if Bi(ω) = 0 for all i = 1, . . . ,g.
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1 Introduction to Jacobians

Proof. Since ω is holomorphic, dω = 0 so that dω = 0 too. By Stokes’ Theorem,∫
∂∆

fωπ
∗
ω =

∫∫
∆

d( fωπ
∗
ω) =

∫∫
∆

π
∗
ω ∧π

∗
ω + fω ∧π

∗dω =
∫∫

∆

π
∗(ω ∧ω) =

∫∫
X

ω ∧ω.

Locally, write ω = f (z)dz, so that ω = f (z)dz. Then ω ∧ω = | f |2dz∧dz =−2i| f |2dx∧dy, so that

Im
∫

∂∆

fωπ
∗
ω = Im

∫∫
X

ω ∧ω < 0.

Therefore, using the lemma and that Ai(ω) = Ai(ω) and likewise for Bi,

Im
g

∑
i=1

Ai(ω)Bi(ω) =
1
2

Im
g

∑
i=1

Ai(ω)Bi(ω)−Ai(ω)Bi(ω) =
1
2

Im
∫

∂∆

fωπ
∗
ω < 0.

�

Using the Riemann-Roch Theorem, it can be shown that dimC Ω1(X) = g (see [3] Chapter VI
§3). (Note that this also proves immediately that Ω1(P1

C) and hence Jac(P1
C) is trivial.) Let ω1, . . . ,ωg

be any basis for Ω1(X) over C. Define the period matrices

A = [Ai(ω j)]g×g and B := [Bi(ω j)]g×g.

Note that while the basis is not specified in the notation, these depend on the choice of basis of Ω1(X).
Then from the above, we have that:

Corollary 1.2.3. The period matrices are nonsingular. Further, A>B = B>A.

Proof. Suppose that c= [c1,c2, . . . ,cg]
> is such that Ac= 0. Let ω =∑

g
j=1 c jω j, then Ai(ω)=∑

g
j=1 c jAiω j =

0 for each i = 1, . . . ,g. By the above corollary, this means that ω = 0, so that c j = 0 for all j = 1, . . . ,g.
The proof for B is the same. This means that the period matrices are nonsingular.

To prove the second part, apply the lemma to σ = ω j and τ = ωk for 1 ≤ j,k ≤ g. Since ω j

and ωk both have type (1,0), we have that ω j ∧ωk = 0, and dωk = 0. Therefore,∫
∂∆

fω j π
∗
ωk =

∫∫
∆

d
(

fω j π
∗
ωk
)
=
∫∫

∆

π
∗(ω j ∧ωk)+ fω j ∧π

∗dωk = 0.

By the lemma, this means that

[A>B] j,k =
g

∑
i=1

Ai(ω j)Bi(ωk) =
g

∑
i=1

Ai(ωk)Bi(ω j) = [B>A] j,k.

�

Since A is nonsingular, there is a basis {ω j} such that the period matrix A = idg (such a
transformation can be achieved by a change of basis matrix with real coefficients). A basis of Ω1(X)
satisfying A = idg is called normalized with respect to the generators {[ai], [b j]} of H1(X ;Z). In this
case, the other period matrix B satisfies some symmetry conditions, as first shown by Riemann.

Lemma 1.2.4 (Riemann’s Bilinear Relations). If B is the b-period matrix with respect to a normalized
basis of Ω1(X) (i.e. such that A = idg), then B is symmetric and has positive definite imaginary part.

Proof. Let {ω1, . . . ,ωg} be a normalized basis. Since A = idg, symmetry of B follows from Corollary
1.2.3. Let c1, . . . ,cg ∈ R be not all zero, and let ω = ∑

g
j=1 c jω j. By Corollary 1.2.2,

Im
g

∑
i=1

Ai(ω)Bi(ω)< 0.
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1 Introduction to Jacobians

But Ai(ω) = ci, so that we have

g

∑
i=1

Ai(ω)Bi(ω) =
g

∑
i=1

ci

g

∑
j=1

c jBi(ω j) = ∑
i, j

cic jBi(ω j),

because c j ∈ R. Therefore, by taking complex conjugates, we get that

c> Im(B)c = Im(c>Bc) = Im∑
i, j

cic jBi(ω j)> 0,

which means exactly that ImB is a positive definite real matrix. �

Corollary 1.2.5. The 2g rows of the period matrices A and B are R-linearly independent, and similarly
for the 2g columns.

Proof. Assume WLOG that the basis is normalized. Suppose that there are row vectors c,d ∈R1×g such

that
[
c d

][idg

B

]
= 0, i.e. c+dB = 0. Taking the imaginary part gives d Im(B) = 0, so that by the above

d = 0; and this implies c = 0. The proof for columns is analogous. �

We are now ready to prove what we wanted:

Proposition 1.2.6. The bilinear pairing

Ω
1(X)×H1(X ;Z)→ C, (ω, [γ]) 7→

∫
γ

ω

is a perfect pairing of Z-modules.

Proof. We want to show that the pairing is nondegenerate. Suppose there is ω ∈ Ω1(X) is such that
∀[γ] ∈ H1(X ;Z) :

∫
γ

ω = 0. Then, in particular, for all i = 1, . . . ,g : Ai(ω) = 0. By Corollary 1.2.2,
this means that ω = 0. Conversely, suppose [γ] ∈ H1(X ;Z) is such that ∀ω ∈ Ω1(X) :

∫
γ

ω = 0. Write
[γ] = ∑

g
i=1 ci[ai]+∑

g
i=1 di[bi]. Let c and d be the real 1×g row vectors with entries ci and di respectively.

By our assumption, we see that if A and B are period matrices, then cA+ dB = 0. By Corollary 1.2.5,
this means that c = d = 0, so that [γ] = 0. �

This proposition tells us that Π =
∫
−

H1(X ;Z)⊆Ω
1(X)∨ is a full-rank lattice, i.e. Ω1(X)∨ ∼=

Π⊗Z R, so that

since Π =
g⊕

i=1

Z
∫

ai

⊕
g⊕

i=1

Z
∫

bi

, we have Ω
1(X)∨ =

g⊕
i=1

R
∫

ai

⊕
g⊕

i=1

R
∫

bi

.

More generally, we have the following definition:

Definition 1.2.7. Let g≥ 1. A full-rank lattice Π⊆ Cg is a discrete additive subgroup of Cg satisfying
Π⊗Z R = Cg. The quotient Cg/Π of Cg by a full-rank lattice Π is called a g-dimensional complex torus.

The 0-dimensional complex torus is defined to be the trivial group. Observe that a g-dimensional
complex torus is isomorphic to (S1)2g, which is a compact real Lie group; i.e. a g-dimensional torus is
a compact complex Lie group. For example, a 1-dimensional complex torus is simply an elliptic curve.
In this terminology, we have shown:

Proposition 1.2.8. Let X be a compact Riemann surface of genus g. Then Jac(X) := Ω1(X)∨/Π is a
g-dimensional complex torus. In particular, it is compact, and for g≥ 1, nontrivial.
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1 Introduction to Jacobians

We use the ideas of this section to compute the Jacobian of elliptic curves.

Proposition 1.2.9. Let X = C/Λ be a complex torus, i.e. an elliptic curve. Then Jac(X)∼= X .

Proof. We know that for a complex torus, g = 1. Suppose that Λ = Z〈ω1,ω2〉. Then by the discussion
in the previous paragraph,

Π = Z
∫

ω1

0
⊕ Z

∫
ω2

0
.

Since Ω1(X) = C〈dz〉, the map Ω1(X)∨ → C given by λ 7→ λ (dz) is an isomorphism. Under this
isomorphism, the image of Π is generated by

∫
ω1
0 dz = ω1 and

∫
ω2
0 dz = ω2, i.e. the image of Π is simply

Λ. Therefore, we see that
Jac(X) := Ω

1(X)∨/Π∼= C/Λ = X .

�

The Jacobian and its quotients, called abelian varieties, are very important objects of study in
the theory of modular forms. We will have more to say about them soon.

1.3 Abel-Jacobi Theorem

This section is based on [3] Chapter VII. Choose a base point p0 ∈ X , and for each p ∈ X , choose a path
γp in X from p0 to p. Define the map A : X →Ω1(X)∨ by

A(p)(ω) :=
∫

γp

ω.

This map is not well-defined as it depends on the choice of path γp, but choosing a different path γ ′p
would change the functional by integration about the cycle γp− γ ′p. Therefore, we get a well-defined
map A : X → Jac(X), which can then be extended by linearity to a group homomorphism A : Div(X)→
Jac(X).

Definition 1.3.1. Fix a base point p0 ∈ X . The map A : Div(X)→ Jac(X) given by

∑
p

np(p) 7→∑
p

np

∫ p

p0

is a well-defined homomorphism, and is called the Abel-Jacobi map for X .

Recall that we have the short exact sequences:

0→ Div0(X)→ Div(X)
deg−−→ Z→ 0, and

0→ C∗→ C(X)∗
div−→ Div0(X)→ Pic0(X)→ 0.

Restricting A to Div0(X) gives us the map A0 : Div0(X)→ Jac(X). Why would we want to do
that? Well, while the map A depends on the choice p0 of basepoint, this restricted map A0 does not!

Proposition 1.3.2. The restricted Abel-Jacobi map A0 : Div0(X)→ Jac(X) is independent of the choice
of base point p0.

Proof. Suppose we choose a different base point p′0, and let γ be any path from p0 to p′0 in X . Then the
image of the Abel-Jacobi map changes by

∫
γ
, which is independent of the points p ∈ X . Therefore, we

get that if ∑p np = 0 then A
(
∑p np(p)

)
changes by

∑
p

np

∫
γ

=

(
∑
p

np

)∫
γ

= 0.
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1 Introduction to Jacobians

�

We are now in a position to state the very important Abel-Jacobi Theorem.

Theorem 1.3.3 (Abel-Jacobi). Let X be a compact Riemann surface, and let D ∈ Div0(X). Then D ∈
div(C(X)∗) iff A0(D) = 0 ∈ Jac(X). Further, the map A0 surjects onto Jac(X), so that it induces an
isomorphism

Div0(X)/div(C(X)∗) = Pic0(X)→∼ Jac(X).

A partial proof can be found in [3] Chapter VII, and complete proofs can be found in [4]
Chapter 15 and [5] Chapter III. We shall focus on some examples and applications of the theorem. In
particular, in §2 of the paper, we will use many times the identification of Pic0(X) with Jac(X).

Example 1.3.4. In the case X = P1
C, we’ve seen that Jac(X) = 0. The Abel-Jacobi Theorem tells us that

Pic0(X) = 0, which is the familiar fact that every degree-0 divisor on the Riemann sphere is principal,
i.e. if D = ∑(zi)−∑(p j)− n∞(∞) has degree zero, then the rational function ∏(z− zi)/∏(z− p j) has
divisor D.

Example 1.3.5. Suppose X = C/Λ is an elliptic curve, so that g = 1. Then by Proposition 1.2.9 and the
Abel-Jacobi Theorem, we get the chain of isomorphisms:

Pic0(X) Jac(X) X

[
∑p np(p)

]
∑
p

∫ p

p0
∑
p

np

∫ p

p0

dz = ∑
p

np(p− p0) = ∑
p

np p.

∼ ∼

In other words, it recovers the well-known condition that a divisor of degree zero D = ∑p np(p) ∈
Div0(X) on an elliptic curve X is the divisor of a function iff ∑p np p = 0 ∈ X in the group law.

1.4 Applications of the Abel-Jacobi Theorem

We use the Abel-Jacobi map to classify some Riemann surfaces of low genera. For that we use the
following proposition:

Proposition 1.4.1. Let X be a compact Riemann surface of genus g. If the Abel-Jacobi map A : X →
Jac(X) is not injective, then X ∼= P1

C and g = 0.

Proof. Suppose that A(p) = A(q) for some p 6= q, i.e. A((p)− (q)) = 0 ∈ Jac(X). By composing with
the isomorphism with Pic0(X), [(p)− (q)] = 0 ∈ Pic0(X). This means that there is a meromorphic
F ∈C(X)∗ such that (p)− (q) = div(F), i.e. F is map with a simple zero at p, a simple pole at q and no
other zeroes or poles. But then the associated holomorphic map of Riemann surfaces F : X → P1

C has
degree one, and is hence an isomorphism. �

Corollary 1.4.2. If X is a compact Riemann surface of genus 0, then X ∼= P1
C is the Riemann sphere.

Proof. If g = 0, then Ω1(X) and hence Jac(X) is trivial, so that the map A : X → Jac(X) cannot be
injective. �

Corollary 1.4.3. If X is a compact Riemann surface of genus g≥ 1, then the Abel-Jacobi map A : X →
Jac(X) is injective.
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1 Introduction to Jacobians

We now use the Abel-Jacobi Theorem to show that every compact Riemann surface X of genus
1 is an elliptic curve, i.e. of the form C/Λ for a full rank lattice Λ⊆ C.

Proposition 1.4.4. Suppose X is a compact Riemann surface of genus g = 1. Then X is isomorphic to a
complex torus, i.e. there is a full rank lattice Λ⊆C such that X ∼= C/Λ. Further, given any point p0 ∈ X ,
there is an isomorphism of X with the complex torus C/Λ such that p0 7→ 0.

Proof. Since X has genus one, Jac(X)∼= C/Π is a complex torus. More precisely, we have the isomor-
phism Jac(X)→∼ C/Π given by [λ ] 7→ λ (ω) for some (any) 0 6=ω ∈Ω1(X). Under this identification, the
Abel-Jacobi map A : X → Jac(X)→ C/Π is given locally as p 7→

∫ p
p0

ω , and is therefore a holomorphic
function of p. This means that the Abel-Jacobi map for a curve of genus 1 is an injective holomorphic
map of compact Riemann surfaces, and is therefore an isomorphism. Further, the choice of p0 is the
only choice made in defining A. �

This theorem means that every genus-one curve is an abelian group, with group law induced
by the Abel-Jacobi isomorphism. This can then be used to define a group law on a smooth projective
plane cubic X : by Plücker’s formula, such a cubic would have genus (3−1)(3−2)/2 = 1. By the above
proposition, X is then isomorphic to a complex torus, and so it is an abelian group. Working out the
details gives back the usual chordal definition of addition on an elliptic curve as a projective variety, and
shows that it is a group without having to prove associativity using the Cayley-Bacharach theorem, for
instance. For more in this direction, see [3] Chapter VII §5 or [6] Chapter III §3.

1.5 Maps of Jacobians, Divisors, and Picards

Suppose X and Y are compact Riemann surfaces, and F : X → Y is a nonconstant holomorphic map.
Following [3] and [7], we define the forward and backward maps FJ,FJ of Jacobians, FD,FD of divisor
groups, and FP,FP of Picard groups respectively in a manner compatible with restriction map and the
Abel-Jacobi isomorphism.

To define the forward map, observe that F induces a pullback on holomorphic differentials.
This gives a linear map F∗ : Ω1(Y )→Ω1(X), which then gives rise to the dual map:

F∗ := (F∗)∨ : Ω
1(X)∨→Ω

1(Y )∨.

For a path γ in X and ω ∈Ω1(Y ), the change of variables formula gives us that(
F∗
∫

γ

)
ω =

∫
γ

F∗ω =
∫

F◦γ
ω.

In particular, if γ is a cycle, then so is F ◦ γ , so that F∗ takes homology to homology. This gives rise to a
holomorphic homomorphism of Jacobians:

Definition 1.5.1. Suppose F : X → Y . The forward map of Jacobians is given by

FJ : Jac(X)→ Jac(Y ), FJ[λ ] = [F∗λ ] = [λ ◦F∗].

This map is holomorphic since it descends from a linear map on the original complex vector
spaces. By the Abel-Jacobi isomorphism Pic0(X)→∼ Jac(X), every element of Jac(X) can be written as[
∑
p

np

∫ p

p0

]
; then the map FJ is given simply by

FJ

[
∑
p

np

∫ p

p0

]
=

[
∑
p

np

∫ F(p)

F(p0)

]
.
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1 Introduction to Jacobians

We want to describe the corresponding forward map FP : Pic0(X)→ Pic0(Y ) such that the following
diagram commutes:

Pic0(X) Jac(X)

Pic0(Y ) Jac(Y ).

∼

FP FJ

∼

Therefore, we want FP to take ∑p np(p) to ∑p np(F(p)). For this, we define more generally:

Definition 1.5.2. Suppose F : X → Y . The forward map of divisor groups is given by

FD : Div(X)→ Div(Y ), F

(
∑
p

np(p)

)
= ∑

p
np(F(p)).

This map clearly preserves Div0, i.e. takes Div0(X) to Div0(Y ). In fact, the commutativity
of the above diagram implies that this map also takes div(C(X)∗) to div(C(Y ))∗.1 Therefore, this map
descends to a map of Picard groups.

Definition 1.5.3. Suppose F : X → Y . The forward map of Picard groups is given by

FP : Pic0(X)→ Pic0(Y ), F

[
∑
p

np(p)

]
=

[
∑
p

np(F(p))

]
.

The reverse map of Jacobians is slighly trickier to define. For that, we first define the F-
trace of a meromorphic 1-form ω on X . Away from branch points, F is a d-fold covering map (where
d := degF), so that if q ∈ Y is not a branch point, there is a chart domain U containing q such that
F−1(U) is the disjoint union of d chart domains V1, . . . ,Vd with F |Vi biholomorphic for each i. Let
F−1

i : U →Vi be the inverse of F |Vi ; then we define the F-trace of ω on U to be

TrF(ω) :=
d

∑
i=1

(F−1
i )∗(ω|Vi).

We quote some properties of this map:

Proposition 1.5.4. This definition of trace extends nicely to the branch points of Y , so that we get a
well-defined C-linear map of meromorphic differential 1-forms:

TrF :M1(X)→M1(Y ).

Further, this map takes holomorphic forms to holomorphic forms, so that we get a linear map:

TrF : Ω
1(X)→Ω

1(Y ).

For a proof, see [3] Chapter VII §3. As before, we dualize to get the map

Tr∨F : Ω
1(Y )∨→Ω

1(X)∨.

We now want to show that this map takes homology to homology. Away from the branch locus, F is
a d-fold covering map, so that given a path γ in Y , at all but finitely many paints of Y we may lift γ to
exactly d preimages γ1, . . . ,γd . These paths come together at the ramification points, but in any case we
may take the closure of these and obtain d lifts, which we again call γi.

1A more explicit way to see this, explained in [7], is to define a C-linear map NF : C(X)→ C(Y ) called the norm of
F , defined by (NF g)(q) = ∑p∈F−1(q) g(p)ep . It is not hard to see that with this definition, for any g ∈ C(X)∗, we have that
FD(div(g)) = div(NF g).
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1 Introduction to Jacobians

Definition 1.5.5. The pullback of a path γ in Y along F is the chain F∗γ := ∑
d
i=1 γi.

With this definition, we have the following lemma.

Lemma 1.5.6. Let F : X → Y . If γ is a path in Y and ω ∈Ω1(X), then(
Tr∨F

∫
γ

)
ω =

∫
γ

TrF(ω) =
∫

F∗γ
ω.

Proof. The integrals can be perturbed to avoid to the ramification and branch loci respectively, which by
Cauchy’s theorem doesn’t affect the value of the integral of a holomorphic form. Effectively, therefore,
the integrals don’t “see” the ramification and brach loci respectively, and therefore we may assume that
γ is a path not through any branch point. In this case, the left side is the sum of the integrals of ω along
the lifts, and the right side is the integral of the sum of the appropriate ω’s. By the change of variables
formula, these are the same. �

In particular, suppose that γ is a cycle in Y ; and let q ∈ γ be a point that is not a branch point.
Then the map taking the initial point of each of the lifts of γ to its final point is a permutation of the d
element set F−1(q), and so the lifts concatenate to loops in X corresponding to the permutation’s cycles,
i.e., F∗γ is a cycle in X . This means exactly as required that Tr∨F takes homology to homology, and we
get a holomorphic homomorphism of Jacobians:

Definition 1.5.7. Suppose F : X → Y . The backward map of Jacobians is given by

FJ : Jac(Y )→ Jac(X), FJ[λ ] = [Tr∨F λ ] = [λ ◦TrF ].

Writing this explicity as before, the map FJ is given simply by

FJ

[
∑
q

nq

∫ q

q0

]
=

[
∑
q

nq ∑
p∈F−1(q)

ep

∫ p

p0

]
,

where ep = multp(F) is the ramification index of p over q, i.e. the number of preimages of q that
coincide at the single point p. As before, we want to describe the corresponding backward map FP :
Pic0(Y )→ Pic0(X) such that the following diagram commutes:

Pic0(Y ) Jac(Y )

Pic0(X) Jac(X).

FP

∼

FJ

∼

Therefore, we want FP to take ∑q nq(q) to ∑q nq ∑p∈F−1(q) ep(p). For this, we define more generally:

Definition 1.5.8. Suppose F : X → Y . The backward map of divisor groups is given by

FD : Div(Y )→ Div(X), F

(
∑
q

nq(q)

)
= ∑

q
nq ∑

p∈F−1(q)

ep(p).

Because for any q∈Y , ∑p∈F−1(q) ep = deg(F) is constant, this map preserves Div0 too. In fact,
as before, the commutativity of the diagram implies that this map also takes div(C(Y )∗) to div(C(X)∗).2

2A more explicit way to see this is to observe that we have the pullback F∗ : C(Y )→ C(X), which satisfies for any
h ∈ C(Y ) and p ∈ X that ordp(F∗h) = ep ordF(p)(h). Since F is nonconstant, it is surjective, and hence we see that

div(F∗h) = ∑
p

ep ordF(p)(h)(p) = ∑
q

ordq(h) ∑
p∈F−1(q)

ep(p).

This means exactly that FD(div(h)) = div(F∗h).
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1 Introduction to Jacobians

Therefore, this map descends to a map of Picard groups.

Definition 1.5.9. Suppose F : X → Y . The backward map of Picard groups is given by

FP : Pic0(Y )→ Pic0(X), F

[
∑
q

nq(q)

]
=

[
∑
q

nq ∑
p∈F−1(q)

ep(p)

]
.

We have therefore succesfully defined maps FJ,FD,FP and FJ,FD,FP corresponding to a map
F : X → Y in a compatible manner.

11



2 Modular Jacobians

2 Modular Jacobians

Following [7] Chapters 5 and 6, we now apply the developed theory to the special case when X is a
modular curve. For that we begin with some general theory of modular forms and Hecke operators.

2.1 Modular Forms and Double Coset Operators

Definition 2.1.1. Let Γ ⊆ SL2(Z) be a congruence subgroup and k ∈ Z. A holomorphic function f :
h→ C is called a modular form of weight k with respect to Γ if

(a) f is weight-k invariant under the action of Γ, and
(b) f [α]k is holomorphic at ∞ for all α ∈ SL2(Z).

The space of modular forms of weight k with respect to Γ is denoted byMk(Γ). If in addition

(c) a0 = 0 in the Fourier expansion of f [α]k for all α ∈ SL2(Z),

then f is called a cusp form, and the space of cusp forms is denoted by Sk(Γ).

The conditions (2) and (3) need to be checked only for the (finitely many) coset representatives
{α j} in the decomposition SL2(Z) =

∏
j Γα j. We need a small lemma:

Lemma 2.1.2. For any γ ∈ GL+
2 (Q) and f ∈Mk(Γ), f [γ]k has a Fourier expansion at ∞. If f is a cusp

form, then the Fourier expansion of f [γ]k has constant term zero too.

Proof. We first claim that every γ ∈ GL+
2 (Q) can be written as γ = θγ ′, where θ ∈ SL2(Z) and γ ′ =

r
[

a b
0 d

]
with r ∈ Q+ and a,b,d ∈ Z coprime and a,d > 0. To show this, the case c = 0 is clear, and

if c 6= 0, then write a/c = a′/c′ for a′,c′ ∈ Z with (a′,c′) = 1; then the matrix θ ∈ SL2(Z) with bottom
row

[
−c′ a′

]
works. By condition (2), we can assume therefore that γ = γ ′ is of this form, but then if

f (τ) = ∑n≥0 anqn
h, then

( f [γ]k)(τ) = rk−2ak−1d−1 f
(

aτ +b
d

)
= rk−2ak−1d−1

∑
n≥0

anζ
bn
dh qan

dh,

where ζr = exp(2πi/r) and qr = exp(2πiτ/r). The lemma follows. �

We use this to develop some more elaborate operators. Let Γ1,Γ2 ≤ SL2(Z) be congruence
subgroups, and α ∈GL+

2 (Q). Then Γ1 acts by left multiplcation on the double coset Γ1αΓ2 ⊆GL+
2 (Q),

so that we may write Γ1\Γ1αΓ2 =
∏

j Γ1β j for some orbit representatives {β j}. We first show that
finitely many β j suffice.

Lemma 2.1.3. If Γ≤ SL2(Z) is a congruence subgroup and α ∈GL+
2 (Q), then so is α−1Γα ∩SL2(Z).

Proof. Pick Ñ ∈Z large enough so that simultaneously Γ(Ñ)⊆Γ, Ñα ∈Mat2(Z), and Ñα−1 ∈Mat2(Z),
and let N = Ñ3. Then

αΓ(N)α−1 ⊆ α(id2+Ñ3 Mat2(Z))α−1 = id2+Ñ · Ñα ·Mat2(Z) · Ñα
−1 ⊆ id2+Ñ Mat2(Z),

along with αΓ(N)α−1 ≤ SL2(Q), means αΓ(N)α−1 ⊆ Γ(Ñ)⊆ Γ, so Γ(N)⊆ α−1Γα . �

Lemma 2.1.4. Let Γ3 = α−1Γ1α ∩Γ2 ⊆ Γ2. Then left multiplication by α induces map Γ2→ Γ1αΓ2,
which descends to an bijection:

Γ3\Γ2→∼ Γ1\Γ1αΓ2.

In other words, {γ2, j} is a set of coset representatives for Γ3\Γ2 iff {β j} = {αγ2, j} is a set of orbit
representatives for Γ1\Γ1αΓ2. In particular, Γ3\Γ2 is finite, and so is Γ1\Γ1αΓ2.

12



2 Modular Jacobians

Proof. The map Γ2→ Γ1\Γ1αΓ2 taking γ2 7→ Γ1αγ2 is surjective, and takes γ2,γ
′
2 to the same orbit iff

Γ1αγ2 = Γ1αγ ′2 i.e. γ ′2γ
−1
2 ∈ Γ3. The final statement follows since by Lemma 2.1.3, Γ3 is a congruence

subgroup, so that [Γ2 : Γ3]≤ [SL2(Z) : Γ3]< ∞. �

This means that the following definition makes sense.

Definition 2.1.5. For congruence subgroups Γ1,Γ2 ≤ SL2(Z), α ∈ GL+
2 (Q), and k ∈ Z we define the

weight-k Γ1αΓ2 operator taking functions f ∈Mk(Γ1) to

f [Γ1αΓ2]k = ∑
j

f [β j]k,

where {β j} is a complete set of orbit representatives, i.e. s.t. Γ1\Γ1αΓ2 =
∏

j Γ1β j.

Proposition 2.1.6. The double coset operator [Γ1αΓ2]k is well-defined (irrespective of the choice of
orbit representatives β j), and takesMk(Γ1)→Mk(Γ2). Further, it takes cusp forms to cusp forms, i.e.
Sk(Γ1)→ Sk(Γ2).

Proof. First, Γ1β j = Γ1β ′j ⇔ β ′jβ
−1
j ∈ Γ1. Since f ∈Mk(Γ1), we have f [β ′jβ

−1
j ] = f , so that f [β ′j] =

f [β j], i.e. this operator is independent of the choice of orbit representatives. Next we show that f [Γ1αΓ2]
is weight-k Γ2-invariant. Any γ2 ∈ Γ2 induces by right multiplication a bijection γ2 : Γ1\Γ1αΓ2 →
Γ1\Γ1αΓ2, so that if {β j} is a set of coset representatives, then so is {β jγ2}. Therefore,

f ([Γ1αΓ2]k)[γ2]k = ∑
j

f [β jγ2]k = f [Γ1αΓ2]k.

Finally, we show that f ([Γ1αΓ2]) is holomorphic at cusps. For arbitrary δ ∈ SL2(Z), f ([Γ1αΓ2]k)[δ ]k
is a sum of a functions f [β jδ ]k, each of which is holomorphic at infinity by Lemma 2.1.2, and so it
satisifies (2). This also shows that it preserves cusp forms. �

The following are some special cases of the double coset operator:

(a) If Γ1 ⊇ Γ2 and α = id2, then [Γ1αΓ2]k is the inclusionMk(Γ1) ↪→Mk(Γ2).
(b) If α−1Γ1α = Γ2, then f [Γ1αΓ2]k = f [α]k, and the mapMk(Γ1)→Mk(Γ2) is an isomorphism.
(c) If Γ1 ⊆ Γ2 and α = id2, and {γ2, j} is a set of coset representatives of Γ1\Γ2, then f [Γ1αΓ2]k =

∑ j f [γ2, j]k is the projection ofMk(Γ1) onto the subspaceMk(Γ2) by symmetrizing over the quo-
tient. This map is clearly a surjection.

In general, any double coset operator is a composition of these three special cases. If Γ′3 = αΓ3α−1 =
Γ1 ∩ αΓ2α−1 ⊆ Γ1, then Γ1 ⊇ Γ′3, α−1Γ′3α = Γ3 and Γ3 ⊆ Γ2, and by Lemma 2.1.4 the following
diagram commutes:

Mk(Γ1) Mk(Γ
′
3) Mk(Γ3) Mk(Γ2)

f f f [α]k ∑ j f [αγ2, j]k = ∑ j f [β j]k.

[Γ1αΓ2]k

[Γ1 id2 Γ′3]k [Γ′3αΓ3]k
∼

[Γ3 id2 Γ2]k

In particular, if restrict this diagram to cusp forms, we obtain another commutative diagram,
which we record here for reference.

13



2 Modular Jacobians

Sk(Γ1) Sk(Γ
′
3) Sk(Γ3) Sk(Γ2)

f f f [α]k ∑ j f [αγ2, j]k = ∑ j f [β j]k.

[Γ1αΓ2]k

[Γ1 id2 Γ′3]k [Γ′3αΓ3]k
∼

[Γ3 id2 Γ2]k

2.2 Hecke and Diamonds

Let’s now define two important operators, the diamond and Hecke operators, as double coset operators.
For this section, we follow [7],[8], and [9].

Recall that we have the surjection Γ0(N)� (Z/NZ)∗ given by
[

a b
c d

]
7→ d with kernel Γ1(N),

showing that Γ1(N) E Γ0(N) and Γ0(N)/Γ1(N)→∼ (Z/NZ)∗. Given any α ∈ Γ0(N), consider the op-
erator [Γ1(N)αΓ1(N)] :Mk(Γ1(N))→Mk(Γ1(N)). Since Γ1(N) E Γ0(N), this operator is case (2)
from above i.e. simply f [α]k. This means that Γ0(N) acts onMk(Γ1(N)); but the subgroup Γ1(N) acts
trivially, so this is actually an action of the quotient (Z/NZ)∗. This allows us to make the following
definition.

Definition 2.2.1. For δ ∈ (Z/NZ)∗, define the diamond operator 〈δ 〉 by

〈δ 〉 :Mk(Γ1(N))→Mk(Γ1(N)), 〈δ 〉 f = f [α]k for α =

[
a b
c d

]
∈ Γ0(N),d ≡ δ (N).

More generally, for n ∈ N, define 〈n〉 by 〈n̄〉 if (n,N) = 1 and 0 otherwise.

Definition 2.2.2. For n ∈ N, define the Hecke operator Tn :Mk(Γ1(N))→Mk(Γ1(N)) by

Tn := ∑
ad=n

a|d
a,d>0

〈a〉
[

Γ1(N)

[
a 0
0 d

]
Γ1(N)

]
k
.

For example, in the simple case n = p a prime, this reduces to

Tp = Γ1(N)

[
1 0
0 p

]
Γ1(N).

These operators satisfy many marvellous properties, some of which are summarized below.

Proposition 2.2.3. The Hecke and diamond operators Tn and 〈n〉 for any n≥ 1 preserve cusp forms, i.e.
if T = Tn or T = 〈n〉, then

T |Sk(Γ1) : Sk(Γ1(N))→ Sk(Γ1(N)).

Proof. All of these operators are (sums of) double coset operators, which by Proposition 2.1.6 preserve
cusp forms. �

Proposition 2.2.4. The Hecke operators satisfy the two relations:

(a) Tnm = TnTm if (n,m) = 1, and
(b) Tpk = TpTpk−1− pk−1〈p〉Tpk−2 for k ≥ 2.

Proposition 2.2.5. The Hecke and diamond operators commute, i.e. for every m,n≥ 1, we have that:

(a) TmTn = TnTm,
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(b) 〈n〉〈m〉= 〈m〉〈n〉, and
(c) Tn〈m〉= 〈m〉Tn.

This last proposition is best understood in terms of the Hecke algebra.

Definition 2.2.6. For R = Z or C, define the Hecke algebra over R to be the algebra of endomorphisms
ofMk(Γ1(N)) generated over R by the Hecke operators, i.e.

TR := R[{Tn,〈n〉 : n ∈ N]⊆ EndMk(Γ1(N)).

Each level N has its own Hecke algebra, but the N is usually omitted from the notation “since
it is usually written somewhere nearby” ([7], p. 238). Then the above proposition can be restated as:

Proposition 2.2.7. The Hecke algebra TR is a commutative unitary alegbra over R.

For proofs of propositions 10 and 11, see [9] Chapter 3.

Finally, the Hecke and diamond operators (at least for (n,N) = 1) are self-adjoint with respect
to the Petersson inner product, so that they are diagonalizable. In particular, by commutativity, they are
simultaneously diagonalizable, so that the following definition makes sense.

Definition 2.2.8. A 0 6= f ∈Mk(Γ1(N)) that is a simultaneous eigenvector for all Tn and 〈n〉 for n≥ 1
is called an eigenform. An eigenform f (τ) = ∑n≥0 anqn is said to be normalized if a1 = 1.

Then we have the following amazing results:

Proposition 2.2.9. Suppose k ≥ 1 and f ∈ Sk(Γ1(N)) is a normalized eigenform, i.e. its q-expansion is
of the form

f (τ) = q+ ∑
n≥2

anqn.

Then for n≥ 1,Tn f = an f , i.e. the Fourier coefficients of f are its Tn eigenvalues.

For a proof, see [7] Theorem 5.8.2 or [10] Chapter III, Proposition 40. All of this is cute, but
do such fanciful eigenforms even exist? They sure do!

Proposition 2.2.10. There is a subspace of Sk(Γ1(N)) which has a basis of normalized eigenforms.

This subspace of Sk(Γ1(N)) is the space Snew
k (Γ1(N)) of new forms, the orthogonal comple-

ment of the space of old forms with respect to the Petersson inner product. For an explanation of what
that is and the proof of this proposition, see [7] §5.8. We make the following definition:

Definition 2.2.11. A normalized eigenform f ∈ Snew
k (Γ1(N)) is called a newform.

We are able to show one direction of the above proposition.

Proposition 2.2.12. The set of newforms in Snew
k (Γ1(N)) is linearly independent.

Proof. Suppose there is a minimal nontrivial relation ∑
m
i=1 ci fi = 0 with ci ∈ C all nonzero; then m≥ 2.

By proposition 2.2.9, for each n≥ 1, Tn( fi) = an( fi). For any n≥ 1, applying Tn−an( f1) to the relation
gives ∑

m
i=2 ci(an( fi)−an( f1)) fi = 0. By the minimality assumption, this must be trivial, so that an( f1) =

an( fi) for all i and n. But this means fi = f1 for all i, a contradiction since m≥ 2. �

We will make use of this definition and proposition later. An aim of the rest of the paper is to
prove the following unexpected result:

Proposition 2.2.13. For k = 2 and any N ≥ 1, the Z-algebra TZ ⊆ EndS2(Γ1(N)), is finitely generated.
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We will show this when we are able to appropriately interpret the action of double coset
operators on the, wait for it, Jacobians of modular curves!

2.3 Action on Jacobians

In this section, we specialize to the case k = 2, interpret the double coset maps geometrically, and see
how they act on Jacobians. Recall that we have Γ1,Γ2 ≤ SL2(Z) congruence subgroups, α ∈ GL+

2 (Q),
Γ3 = α−1Γ1α ∩Γ2 ⊆ Γ2 and Γ′3 = αΓ3α−1 = Γ1∩αΓ2α−1 ⊆ Γ1. Further, {γ2, j} denotes a set of coset
representatives for Γ3\Γ2, and {β j} = {αγ2, j} denotes a set of orbit representatives for Γ1\Γ1αΓ2.
Finally, we have the maps

Γ2 Γ3 Γ′3 Γ1,
∼

where the middle map is the isomorphism γ 7→ αγα−1. Letting X j := X(Γ j) = Γ\h∗, we get the corre-
sponding maps of modular curves

X2 X3 X ′3 X1,
π2 α π1

where the middle map is the curve isomorphism Γ3τ 7→ Γ′3α(τ). Pulling an element Γ2τ ∈ X2 across
these to X1 gives a map:

Γ2τ {Γ2γ2, j(τ)} {Γ′3β j(τ)} {Γ1β j(τ)},
π
−1
2 α π1

which induces the map3 [Γ1αΓ2]
∨
2 : Div(X2)→ Div(X1) that linearly extends the map given by Γ2τ 7→

∑ j Γ1β j(τ). In the language of §1.5, we now recognize this map to be

[Γ1αΓ2]
∨
2 = π1,D ◦αD ◦π

D
2 : Div(X2)→ Div(X1),

which consequently descends to the map of Picard groups

[Γ1αΓ2]
∨
2 = π1,P ◦αP ◦π

P
2 : Pic0(X2)→ Pic0(X1),

[
∑
τ

nτΓ2τ

]
7→

[
∑
τ

nτ ∑
j

Γ1β j(τ)

]
.

By the Abel-Jacobi isomorphism and the compatibility of the forward and backward maps, we therefore
get the map

[Γ1αΓ2]
∨
2 = π1,J ◦αJ ◦π

J
2 : Jac(X2)→ Jac(X1), [λ ] 7→ [λ ◦Trπ2 ◦α∗ ◦π

∗
1 ]

The reason for the choice k = 2 is that it is well-known (see4 [7] §3.3) that in this case there is
an isomorphism ω : S2(Γ)→∼ Ω1(X(Γ)) of C-vector spaces, given essentially by f 7→ω( f ) where ω( f )
pulls back to f (z)dz on h. This gives rise to the isomorphism ω∨ : Ω1(X(Γ))∨→∼ S2(Γ)

∨. Under this
isomorphism, the Jacobian Jac(X) of the modular curve X = X(Γ) is identified with the quotient

Jac(X)∼= S2(Γ)
∨/ω

∨H1(X ;Z).

But now the crux of the argument is that it is easy to see that the following massive diagram
commutes:

3The choice of notation will be explained momentarily.
4Beware of the slightly different notation. Diamond and Shurman use Ω to denote what we callM, and Ωhol to denote

what we call Ω.
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S2(Γ1) S2(Γ
′
3) S2(Γ3) S2(Γ2)

Ω1(X1) Ω1(X ′3) Ω1(X3) Ω1(X2)

X1 X ′3 X3 X2

o

[Γ1αΓ2]2

[Γ1 id2 Γ′3]2

o

[Γ′3αΓ3]2
∼

o

[Γ3 id2 Γ2]2

o

π∗1 α∗ Trπ2

π1 α

∼
π2

This is essentially because the differential forms transform correctly since for k = 2, we have k/2 =
k− 1 = 1. Since the below map dualizes to descend to Jacobians, so does the above map (this also
explains the notation). Henceforth, we implicitly identify Jac(X) with a quotient of S2(Γ)

∨. In this
language, we have thus shown:

Proposition 2.3.1. Let Γ1,Γ2 ≤ SL2(Z) be congruence subgroups, and let α ∈GL+
2 (Q). Let Xi = X(Γi)

for i = 1,2 be the corresponding modular curves. Then the double coset operator [Γ1αΓ2]2 acts on
Jacobians of Xi from the right, i.e. we have an induced linear map

[Γ1αΓ2]
∨
2 : Jac(X2)→ Jac(X1),

where Jac(Xi) = S2(Γi)
∨/ω∨i H1(Xi;Z) for i = 1,2, given simply by

[ψ] 7→ [ψ ◦ [Γ1αΓ2]2] for ψ ∈ S2(Γ2)
∨.

Now, since the Hecke and diamond operators are (sums of) double coset operators, we have
shown:

Proposition 2.3.2. For k = 2 and any n,N ≥ 1, the Hecke operators T = Tn and the diamond operators
T = 〈n〉 act by composition on the Jacobian J1(N) := Jac(X1(N))) associated to Γ1(N),

T : J1(N)→ J1(N), [ψ] 7→ [ψ ◦T ] for ψ ∈ S2(Γ1(N))∨.

This is at the heart of what we want to show.

2.4 Hecke Algebra and Algebraic Eigenvalues

We are now in a position to prove the unexpected results we wanted.

Theorem 2.4.1. Let f ∈ S2(Γ1(N)) be a normalized eigenform. Then the eigenvalues (and hence the
Fourier coefficients) an( f ) are algebraic integers.

This theorem is surprising because a priori, there is no reason whatsoever that the coefficients
should be algebraic over Q, let alone algebraic integers.

Proof. The Hecke operators T = Tn and T = 〈n〉 act on the dual space of weight-2 cusp forms by right-
composition

T : S2(Γ1(N))∨→ S2(Γ1(N))∨, ψ 7→ ψ ◦T.

By the previous proposition, the result descends to the quotient J1(N), so that it acts by endomorphisms
on the kernel H1 := ω∨H1(X1(N);Z), a finitely generated abelian group. In particular, the character-
istic polynomial fT of T acting on H1 is monic and has integral coefficients. By the Cayley-Hamilton
Theorem, fT (T ) ≡ 0 on H1. Since T is C-linear and H1⊗Z R = S2(Γ1(N))∨, we have fT (T ) ≡ 0 on
S2(Γ1(N))∨, and so fT (T ) ≡ 0 on S2(Γ1(N)). Therefore, the minimal polynomial of T on S2(Γ1(N))
divides fT , and its roots, the eigenvalues, satisfy fT , making them algebraic integers. �
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2 Modular Jacobians

Theorem 2.4.2. The Hecke algebra TZ for weight-2 cusp forms for any level N ≥ 1, when considered
as a subalgebra of EndS2(Γ1(N)), is finitely generated.

Proof. As before, the Hecke and diamond operators, and hence the Hecke algebra, acts on the dual space
S2(Γ1(N))∨ by right composition, and this action descends to the quotient. This means that TZ can be
viewed as a subring of endomorphisms of the free Z-module H1. But the ring of endomorphisms of a
free Z-module of rank g is a free Z-module of rank g2, and so any subring of it is a free Z-module of
finite rank; in particular, it is finitely generated. This means that TZ, when considered a subalgebra of
EndH1, is finitely generated. But now as before, we use H1⊗Z R = S2(Γ1(N))∨ to conclude that it is
also finitely generated when considered as a subalgebra of EndS2(Γ1(N)). �

Theorem 2.4.3. Let f ∈ S2(Γ1(N) be a normalized eigenform, and write f (τ) = ∑
∞
n=1 anqn. Then the

subfield K f := Q({an}) of C generated by the Fourier coefficients of f is a number field, i.e. a finite-
degree extension of Q.

Proof. For a fixed normalized eigenform f , consider the eigenvalue homomorphism

λ f : TZ→ C characterized by T f = λ f (T ) f .

By Proposition 2.2.9, its image is Z[{an}]. Since TZ is a finitely generated Z-module, so is Z[{an}]. By
Theorem 2.4.1, the an are algebraic integers, so that the field of fractions of the image is a finite degree
extension of Q. �

Definition 2.4.4. Let f ∈ S2(Γ1(N)) be a normalized eigenform, and write its q-expansion f (τ) =
∑

∞
n=1 anqn. Then the number field K f = Q({an}) generated by the Fourier coefficients of f is called the

number field of f .

The significance of this theorem is that now we can use different embeddings σ : K f ↪→ C to
produce more eigenforms. More precisely, given an embedding σ : K f ↪→ C, we can conjugate f given
by f (τ) = ∑n≥1 anqn to produce f σ given by

f σ (τ) =
∞

∑
n=1

aσ
n qn.

Then we have:

Theorem 2.4.5. Let f ∈ S2(Γ1(N)) be a normalized eigenform. For any σ : K f ↪→ C, the conjugated
f σ is also a normalized eigenform. If f is a newform, then so is f σ .

This theorem makes sense because there is a sense of symmetry between the different forms
in { f σ : σ ∈ Gal(K f /Q)}. We’ll exploit this symmetry in the next section. Using this theorem, and
standard facts from Galois theory, it can then be shown that:

Corollary 2.4.6. The space S2(Γ1(N)) has a basis of forms with integer coefficients.

The idea is to symmetrize to show that there is a basis of forms with Gal(K f /Q)-invariant
coefficients. This would mean by Galois theory that the coefficients are in Q, and then Theorem 2.4.1
implies that they are integers. For more precise statements and proofs of the above results, see [7] §6.5.

2.5 Abelian Varieties and Decomposition of Modular Jacobians

The plan for this last section is to use the theory developed above to talk briefly about abelian vari-
eties associated to newforms, and the decomposition of modular Jacobians into a direct sum of abelian
varieties associated to classes of newforms. This section is based on [7] §6.6.
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2 Modular Jacobians

Let f ∈ Snew
2 (Γ1(M f )) be a newform at some level5 M f , and therefore an eigenform for the

Hecke algebra TZ. Recall that we have the eigenvalue homomorphism:

λ f : TZ→ C characterized by T f = λ f (T ) f .

Denote the kernel kerλ f by I f , i.e.

I f := kerλ f = {T ∈ TZ : T f = 0}.

The image of this map is the Z-module Z[{an}], and by the First Isomorphism Theorem, the map T 7→
λ f (T ) induces a Z-module isomorphism TZ/I f →∼ Z[{an( f )}], where the latter is an order in OK f and
consequently has rank [K f : Q] as a Z-module. Since TZ acts on the Jacobian J1(M f ), the subgroup
I f J1(M f ) of J1(M f ) and the following definition make sense.

Definition 2.5.1. The abelian variety associated to f is defined to be the quotient:

A f := J1(M f )/I f J1(M f ).

Now TZ/I f acts on A f and hence so does its isomorphic image Z[{an( f )}]. Since by Proposi-
tion 2.2.9 we have λ f (Tn) = an( f ), the following diagram commutes:

J1(M f ) J1(M f )

A f A f .

Tn

an( f )

(Note that the bottom row in general is not multiplication by an( f ), but rather Tn acting on A f , i.e. for
[ψ] ∈ A f ,σ : K f ↪→ C we have (an( f )[ψ])( f σ ) = an( f )σ ψ( f σ ). However, if an( f ) ∈ Z[{an}] is in the
isomorphic image Z⊆ Z[{an}] of Z+ I f ⊆ TZ/I f , then it does act by multiplication.)

We deduce now the complex-analytic structure of abelian varieties associated to newforms.
For that, we first define an equivalence relation on newforms by

f ∼ f ′⇔∃σ ∈ Aut(C) : f σ = f ′,

and let [ f ] = { f σ : σ ∈ Aut(C)} be the equivalence class of f ; then by Theorem 2.4.5, |[ f ]|= [K f : Q],
and each f σ is a newform at level M f . Consider the subspace

Vf := C〈[ f ]〉 ⊆ S2(Γ1(M f )).

By Proposition 2.2.12, this space has dimension [K f : Q]. Restricting the discrete subgroup ω∨H1(X1(M f );Z)
of S2(Γ1(M f ))

∨ to Vf gives the subgroup

Λ f := ω
∨H1(X1(M f );Z)|Vf ⊆V∨f .

Restricting to Vf gives a well-defined homomorphism

J1(M f )→V∨f /Λ f , [ψ] 7→ ψ|Vf +Λ f for ψ ∈ S2(Γ1(M f ))
∨.

The claim is that this induces an isomorphism on the corresponding abelian variety.

5Note that f uniquely determines M f , although we don’t show this. Essentially, M f is simply the smallest integer M such
that f ∈ S2(Γ1(M)). See [7] Chapter 5 for more details.
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2 Modular Jacobians

Proposition 2.5.2. Let f ∈ Snew
2 (Γ1(M f )) be a newform with number field K f . Then restricting to Vf

induces an isomorphism

A f →∼ V∨f /Λ f , [ψ]+ I f J1(M f ) 7→ ψ|Vf +Λ f for ψ ∈ S2(Γ1(M f ))
∨,

and the right side is a [K f : Q]-dimensional complex torus. In particular, A f is a [K f : Q]-dimensional
complex torus.

Proof Sketch. For the sake of brevity, let S2 = S2(Γ1(M f )) and H1 = ω∨H1(X1(M f );Z). Using a bunch
of named isomorphism theorems,

A f = J1(M f )/I f J1(M f ) = (S∨2 /H1)/I f (S
∨
2 /H1)∼= S∨2 /(I fS

∨
2 +H1)∼= (S∨2 /I fS

∨
2 )/H1,

where H1 is the image of H1 in S∨2 /I fS
∨
2 . Let S2[I f ] := {g ∈ S2 : ∃T ∈ I f : T g = 0}. The restriction

map S∨2 � S2[I f ]
∨ induces the isomorphism

S∨2 /I fS
∨
2 →∼ S2[I f ]

∨, [ψ]+ I fS
∨
2 7→ ψ|S2[I f ],

so that
A f →∼ S2[I f ]

∨/H1|S2[I f ], [ψ]+ I f J1(M f ) 7→ ψ|S2[I f ]+H1|S2[I f ].

It suffices to show that S2[I f ] =Vf and that Λ f = H1|Vf ⊆V∨f is a full rank lattice. Clearly, Vf ⊆ S2[I f ].
To show the other direction, first show using Proposition 2.2.9 that the pairing

TC×S2→ C, (T,g) 7→ a1(T g)

is a perfect pairing of TZ-modules. This induces the isomorphism S∨2 →
∼ TC so that

dimCS2[I f ] = dimCS2[I f ]
∨ = dimCS

∨
2 /I fS

∨
2 = dimC TC/I f TC.

But the natural surjection TZ⊗Z C� TC,∑Ui⊗ zi 7→ ∑ziUi descends to a surjection (TZ/I f )⊗Z C→∼
(TZ⊗Z C)/(I f ⊗Z C)� TC/I f TC, so that

dimCS2[I f ]≤ dimC(TZ/I f )⊗Z C = rank(TZ/I f ) = [K f : Q] = dimCVf .

Finally, it suffices to show that Λ f ⊗Z R⊇V∨f and rank(Λ f )≤ dimR(V∨f ). Since Vf ↪→S2, the restriction
π : S∨2 � V∨f surjects; but then since H1⊗Z R = S∨2 , we have Λ f ⊗Z R = π(H1)⊗Z R ⊇ V∨f . On the
other hand,

dimRV∨f = dimR(S
∨
2 /I fS

∨
2 ) = dimR(H1⊗Z R)/(I f H1⊗Z R) = rank(H1/I f H1).

Now Λ f = π(H1)∼= H1/(H1∩kerπ) and I f H1 ⊆ kerπ show us that there is a surjection H1/I f H1� Λ f ,
making rank(Λ f )≤ rank(H1/I f H1) = dimRV∨f . �

The useful equivalence relation between complex tori turns out to be weaker than a complex
Lie group isomorphism–it is an isogeny.

Definition 2.5.3. An isogeny of complex tori is a surjective holomorphic homomorphism with finite
kernel.

It is easy to prove that like in the elliptic curve g = 1 case, isogenies are equivalence relations.
The key theorem in this direction is then:

Theorem 2.5.4. The Jacobian J1(N) associated to Γ1(N) is isogenous to a direct sum of abelian varieties
associated to equivalence classes of newforms,

J1(N)→
⊕
[ f ]

Aσ0(N/M f )
f ,

where the sum is over equivalence classes over newforms f ∈ Snew
2 (Γ1(M f )) for levels M f |N, and

σ0(N/M f ) is the number of positive divisors of N/M f .

For a proof, see [7] Theorem 6.6.6.
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3 Summary

3 Summary

Associated to any compact Riemann surface X of genus g, we have a g-dimensional complex torus

Jac(X) :=
Ω1(X)∨∫
−

H1(X ;Z)
.

We have the Abel-Jacobi map A : X → Jac(X), which is injective for g≥ 1. This extends to a canonical
map A0 : Div0(X)→ Jac(X), which then by the Abel-Jacobi Theorem descends to an isomorphism

Pic0(X)→∼ Jac(X) given by

[
∑
p

np(p)

]
7→

[
∑
p

np

∫ p
]
,

where the integrals are all taken from the same point. Associated to a nonconstant holomorphic map
F : X → Y of compact Riemann surfaces, we then define the forward maps FJ,FP,FD and the backward
maps FJ,FP,FD of Jacobians, Picard groups, and divisor groups respectively, which are compatible
under the Abel-Jacobi isomorphism and the natural quotient map.

Given congruence subgroups Γ1,Γ2 ≤ SL2(Z), α ∈ GL+
2 (Q), and k ∈ Z, we have the double

coset operators
[Γ1αΓ2]k :Mk(Γ1)→Mk(Γ2),

which preserve cusp forms. Special cases of these operators include the Hecke and diamond operators.
By interpreting the double coset operators geometrically on the modular curves X(Γ1) and X(Γ2) and
using the above forward and backward maps, it is then shown that these double coset operators act on the
Jacobians by composition from the right. This means in particular that Hecke and diamond operators
preserve the finitely generated abelian groups H1(X(Γi);Z), and this proves many interesting results
including the fact that by adjoining the Fourier coefficients of a normalized eigenform f ∈ S2(Γ1(N))
to Q, we get a number field K f . The Galois theory of this number field then allows us to generate
new normalized eigenforms by conjugation by elements of Gal(K f /Q), and allows us to prove that
S2(Γ1(N)) has a basis of forms with integer coefficients.

Associated to each newform f ∈ Snew
2 (Γ1(M f )) is the abelian variety A f , which is a [K f : Q]-

dimensional complex torus. The main theorem in this direction is that the Jacobian J1(N) := Jac(X1(N)))
then decomposes as a direct sum of abelian varieties associated to equivalence classes of newforms in
S2(Γ1(N)). Finally, we mention that the famed Modularity Theorem of Breuil, Conrad, Diamond, Taylor
and Wiles can be stated purely in terms of abelian varieties.

Theorem 3.0.1 (Modularity Theorem, Version AC). Let E = C/Λ be a complex elliptic curve with j-
invariant j(E) ∈Q. Then for some positive integer N and some newform f ∈ S2(Γ0(N))⊆ S2(Γ1(N)),
there exists a surjective holomorphic homomorphism of complex tori

A f → E.
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Basel AG, 1996.

[5] H. M. Farkas and I. Kra, Riemann Surfaces. 71, Graduate Texts in Mathematics, Springer-Verlag
New York Inc., 1980.

[6] J. H. Silverman, The Arithmetic of Elliptic Curves. 106, Graduate Texts in Mathematics, Springer,
second ed., 2008.

[7] F. Diamond and J. Shurman, A First Course in Modular Forms. 228, Graduate Texts in Mathemat-
ics, Springer, 2005.
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