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Abstract

This paper deals with the Euclidean properties of rectangular circumhyperbolae with respect to a triangle
using as little analytic treatment as possible. Familiarity with projective geometry, specifically ideal points,
conic sections and Pascal’s Theorem, is assumed.
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1 Introduction to Circumconics
In this paper, the symbol ∡ represents a directed angle modulo π.

Theorem 1. The isogonal conjugate l∗ of a line l in the plane of 4ABC is a circumconic of 4ABC.

Proof. We use homogenous barycentric coordinates. Let the line be l ≡ ux+ vy+wz = 0. Isogonal conjugation
maps P (x : y : z) 7→ P ∗(a

2

x : b2

y : c2

z ). Therefore the line l is mapped to l∗ ≡ ua2

x + vb2

y + wc2

z = 0 ≡
ua2yz + vb2zx + wc2xy = 0, which is a second-degree curve and hence a conic. The reason it passes through
the vertices is because a sequence of points on l converging to l ∩ BC have isogonal conjugates converging to
A. Because isogonal conjugation is a continuous mapping, continuity ensures that A ∈ l∗. The other vertices
also lie on l∗ by symmetry.

Theorem 2. The isogonal conjugate of the ideal line is the circumcircle Ω of 4ABC.

Proof. The ideal line l∞ ≡ x + y + z = 0 is mapped to a2yz + b2zx + c2xy = 0, which is nothing but
Ω ≡ (ABC).

Aliter. This theorem can also be proved by angle chasing. We show that the isogonal conjugate of a point P is
an ideal point iff P ∈ Ω. For that, let ra, rb and rc be the lines isogonal to AP , BP and CP with to respect
the corresponding vertices.
First assume that P ∈ Ω. Then ∡(AB, ra) = ∡PAC = ∡PBC = ∡(AB, rb), hence ra ‖ rb. By symmetry,
rc is also parallel to these lines and hence these concur at a point at infinity. For the converse, assume that
ra ‖ rb ‖ rc. Using essentially the same argument, ∡PAC = ∡(AB, ra) = ∡(AB, rb) = ∡PBC =⇒ P ∈ Ω.

Figure 1: Ω∗ ≡ l∞

Corollary 2.1. The nature of the circumconic l∗ may be determined by counting the number of intersections
of l with Ω ≡ (ABC). In particular, l∗ is an ellipse, parabola or hyperbola according to whether l meets Ω in 0,
1 or 2 points respectively.

Theorem 3. l∗ is a rectangular hyperbola iff l is a diameter of Ω. Equivalently, l∗ is a rectangular hyperbola
iff H ≡ O∗ ∈ l∗.

Proof. Suppose that l ∩ Ω = {X1, X2}. Then l∗ is a hyperbola with points at infinity Y1 = X∗
1 and Y2 = X∗

2 .
By isogonal conjugates, ∡Y1AY2 = −∡X1AX2 and hence the angle between the asymptotes of l∗ is the angle
subtended by X1X2 at Ω. In particular, the asymptotes are perpendicular iff X1X2 is a diameter of Ω.

2 Revisiting Wallace-Simson Lines
Since we will need the discussion of Wallace-Simson lines in the following article, it is worth revising their
properties.
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Theorem 4. Let lP denote the Simson line of P ∈ Ω ≡ (ABC) with respect to 4ABC, and let H denote
the orthocenter of 4ABC. Then lP bisects PH, and this point of bisection lies on the nine-point circle Ω9 of
4ABC.

Proof. This proof can be found in [1].
Let X, Y and Z be the feet of perpendiculars from P to BC, CA and AB respectively. By definition, X,Y, Z ∈
lP . Let AH meet Ω again in H ′ 6= A and let PX meet Ω again in K ′ 6= P . Let K be the orthocenter of
4PBC. Then, we know that K ′H ′ is the image of KH in BC. Let L ∈ lP ∩ AH. Then LA ‖ XK ′ and
∡AK ′P = ∡ABP = ∡ZBP = ∡ZXP where the last equality follows because PZXB is cyclic with diameter
PB. ∴ AK ′ ‖ lP ≡ LX =⇒ ALXK ′ is a parallelogram.
Because AH ‖ PK and AH = PK = 2R cosA, AHKP is also a parallelogram. Consequently, LH ‖ PX along
with LH = LA+AH = XK ′+PK = KX+PK = PX implies that PLHX is also a parallelogram. Therefore,
LX ≡ lP bisects PH. Moreover, because the homothety H(H, 1

2 ) maps Ω to Ω9, the midpoint of PH also lies
on Ω9.

Figure 2: Simson line bisects the segment PH

Aliter. This proof is due to Ross Honsberger, and was taken from [2].
With notation as in the previous proof, let D be the foot of altitude from A and let E ∈ PH ′ ∩ BC. Further,
let M be the midpoint of PE. Since the triangles 4HEH ′ and 4XME are isosceles, ∡MXE = ∡XEM =
∡CEH ′ = ∡HEC, we get that MX ‖ HE. But on the other hand, becuase PY CX is cyclic, ∡Y XC =
∡Y PC = π

2 − ∡PCA = π
2 − ∡PH ′A = ∡CEH ′ = ∡HEC and hence lP ‖ HE. This means that M ∈ lP

and that lP is the P -midline of 4PEH. Therefore, it passes through the midpoint of PH. We can finish with
H(H, 1

2 ) as before.

Figure 3: Another proof that Simson line bisects PH
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Theorem 5. Let P and P ′ be antipodes of Ω. Then P ′∗, the isogonal conjugate of P ′, is the ideal point of lP .

Proof. With the same notation as before, because AK ′ ‖ lP and because PY AZ is cyclic, ∡BAK ′ = ∡AZY =
∡APY . Further, because AP ⊥ AP ′ and PY ⊥ AC, we get ∡APY = π

2 −∡Y AP = ∡P ′AC. Therefore, finally,
∡BAK ′ = ∡P ′AC, which means that the isogonal conjugate of P ′ lies on AK ′ and hence on lP .

Figure 4: P ′∗ ∈ lP

Theorem 6. If P,Q ∈ Ω, the ∡(lP , lQ) is negative of the angle subtended by arc PQ in Ω.

Proof. Let perpendiculars from P and Q to BC meet Ω again in P1 and Q1 other than P and Q respectively.
Then PP1QQ1 (not necessarily in that order) is an isosceles trapezium. Moreover, from the first proof of
Theorem 4, we know that lP ‖ AP1 and lQ ‖ AQ1. Hence, ∡(lP , lQ) = ∡P1AQ1 = ∡P1PQ1 = −∡PP1Q.
Consequently, ∡(lP , lQ) = −∡PSQ for S ∈ Ω as required.

Figure 5: ∡(lP , lQ) = −∡PSQ for S ∈ Ω. The negative angles are highlighted in a different shade.

Corollary 6.1. Simson lines of antipodal points are perpendicular.

Corollary 6.2. Because isogonal lines of antipodal points are perpendicular, Theorem 5 means that the Simson
line of a point is perpendicular to its isogonal line.

Theorem 7. Simson lines of antipodal points P and P ′ of Ω intersect on Ω9.

Proof. Let M and M ′ be the midpoints of PH and PH ′ respectively. Because H(H, 1
2 ) : PP ′ 7→ MM ′, M and

M ′ are antipodal on Ω9. Further, by Corollary 6.1, lP ⊥ lP ′ . If XP ∈ lP ∩ lP ′ then ∡MXPM
′ = π

2 , because of
which XP ∈ Ω9.

This theorem, as it turns out, links very beautifully with the concept of the asymptotes of rectangular
circumhyperbolae, as the following sections will develop.
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Figure 6: Simson lines of antipodal points meet on Ω9

3 Two Useful Theorems on Conics
3.1 Brocard’s Theorem
Theorem 8 (Brocard’s Theorem). Let ABCD be a quadrilateral inscribed in a conic C. Let M ∈ AD ∩ BC,
N ∈ AB ∩CD, P ∈ AA ∩CC, Q ∈ BB ∩DD and J ∈ AC ∩BD. (Here AA means the tangent to C at A and
so on.) Then M,N,P and Q are all collinear on the polar j of J with respect to C.

Proof. By Pascal’s Theorem on AABCCD, P ∈ MN . Similarly, by Pascal’s Theorem on ABBCDD, Q ∈ MN .
Moreover, since the J belongs to AC, the polar of P and to BD, the polar of Q, La Hire’s Theorem tells us
that PQ ≡ j as needed.

Figure 7: Brocard’s Theorem

3.2 8 Points on a Conic
Theorem 9. For a quadrilateral ABCD, assign M , N and J as before, i.e. let M ∈ AD∩BC, N ∈ AB ∩CD
and J ∈ AC ∩ BD. Suppose that quadrilaterals ABCD and A′B′C ′D′ are assigned the same M , N and J .
Then the 8 points A,B,C,D,A′, B′, C ′, D′ lie on a conic.

Proof. Consider the projective transformation that maps MN to the ideal line. Then ABCD and A′B′C ′D′

are mapped to concentric parallelograms with parallel sides which clearly determine the degenerate conic AC ∪
BD.
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Figure 8: 8 Points on a Conic

4 Onto Rectangular Circumhyperbolae
Since a conic is completely determined by five points, Theorem 3 tells us that a rectangular circumhyperbola
of 4ABC is characterized completely by the fifth point P it contains. Let H(P ) denote the rectangular
circumhyperbola containing P . Further, let Z be the center of H(P ). Then Z is called the Poncelet Point of P
with respect to 4ABC, or in a more symmetric formulation, the Poncelet Point of the quadrilateral ABCP .

Theorem 10. Z lies on the nine-point circle Ω9 of the orthocentric system ABCH.

Proof. This proof was taken from the online blog linked in [3]. Let D be the fourth intersection of H(P ) with
Ω ≡ (ABC) and let H ′ be the orthocenter of 4DBC. By Theorem 3, H ′ ∈ H(P ). Moreover, AHH ′D is
a parallelogram inscribed in a hyperbola H(P ). Applying Brocard’s Theorem to AHH ′D, the center of the
parallelogram AHH ′D must be the pole of the ideal line l∞ with respect to H(P ), which is none other than its
center Z. Hence, Z is the midpoint of HD and once again using H(H, 1

2 ) : D 7→ Z, we get that Z ∈ Ω9.

Figure 9: Z ∈ Ω9

Corollary 10.1. Given any four points A, B, C and D in a plane, the nine-point circles of 4ABC, 4BCD,
4CDA and 4DAB concur.

Proof. Consider the rectangular hyperbola H that passes through A, B, C and D. Then its center Z, the
Poncelet Point of quadrilateral ABCD, is the desired point of concurrency.
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Figure 10: Z as the point of concurrency. Here ΩA denotes the nine-point circle of 4BCD and so on.

Remark. An elementary proof of this result and further reading about the Poncelet Point can be found in [4].

Theorem 11 (Main Theorem). Let PQ be a diameter of Ω ≡ (ABC) and let H denote the rectangular
circumhyperbola that is the isogonal conjugate of the line PQ with respect to 4ABC. Then the asymptotes of
H are the Simson lines lP and lQ of P and Q respectively with respect to 4ABC.

Proof. As previously, let D be the fourth intersection of H with Ω and let Z be the center of H. Let O denote
the circumcenter of 4ABC and let A′ denote the antipode of A in Ω. Let F ∈ PD∩BC and E ∈ lP ∩BC. Let
P ′ and Q′ be the midpoints of PH and QH respectively. Finally, let the line parallel to PQ through A meet Ω
again in G.

We know from Theorem 4 that P ′ ∈ lP and from Theorem 5 that Q∗ ∈ lP . Because Q∗ is one of the points
at infinity of H, lP is parallel to one of the asymptotes of H. Hence, to show that it is one of the asymptotes,
it suffices to show that Z ∈ lP . The fact that lQ is the other asymptote follows by symmetry.

We know that BC is the Simson line of A′ with respect to 4ABC. Using Theorem 6, ∡(BC, lP ) =
∡(lA′ , lP ) = −∡A′QP = ∡PQA′. But because of the homothety H(O,−1) : 4A′QP 7→ 4APQ, ∡PQA′ =
∡QPA, which in turn equals ∡GAP because of our stipulation that AG ‖ PQ. Therefore, ∡(BC, lP ) =
∡GAP = ∡GAC + ∡CAP .

Because D is the isogonal conjugate of the ideal point of PQ with respect to 4ABC, AD and AG are isogonal
with respect to ∠BAC implying that ∡GAC = ∡BAD. Consequently, ∡(BC, lP ) = ∡BAD + ∡CAP =
∡BAP + ∡CAD. However, ∡BAP = ∡BDP = ∡BDF and ∡CAD = ∡CBD = ∡FBD. Summing up,
∡(BC, lP ) = ∡BDF + ∡FBD = ∡BFD = ∡(BC,PD) =⇒ lP ‖ PD.

This means that lP is the H-midline of 4PDH and contains the midpoint of DH, which we know from the
proof of the previous theorem to be Z. This concludes the proof.

Figure 11: The Turkish Delight!

Remark 11.1. This is an original proof, although I am confident that this result is known.
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5 The Circles Z Belongs To
Let Z be the Poncelet Point of P with respect to 4ABC. This section develops two cute results taken from [3].

5.1 The Pedal Circle
Theorem 12. Z lies on the pedal circle of P with respect to 4ABC.

Proof. Let D,E, F be the feet of perpendiculars from P to BC,CA,AB respectively. Let K,L,M denote the
midpoints of AC,AB,AP respectively.

Then ∡EZF = ∡EZM + ∡MZF . Because of Corollary 10.1, Z ∈ (MKE) ∩ (MLF ). Hence, ∡EZM =
∡EKM and ∡MZF = ∡MLF . Therefore, ∡EZF = ∡EKM + ∡MLF = ∡AKM + ∡MLA.

By midlines, it is evident that ∡AKM = ∡ACP = ∡ECP . But ECDP is cyclic, so ∡ECP = ∡EDP .
Consequently, ∡AKM = ∡EDP . Similarly, ∡MLA = ∡PDF , so that ∡EZF = ∡AKM+∡MLA = ∡EDP +
∡PDF = ∡EDF =⇒ Z ∈ (DEF ).

Figure 12: Z lies on the Pedal Circle (DEF )

5.2 The Cevian Circle
Theorem 13. Z lies on the cevian circle of P with respect to 4ABC.

Proof. Let U, V,W be the feet of cevians in 4ABC. Let JU , JV , JW and I be the corresponding excenters and
incenter of 4UVW . Applying Theorem 9 to quadrilaterals ABCP and JUJV JW I we get that these 8 points
lie on a conic. However, I is the orthocenter of 4JUJV JW , and therefore this conic must be a rectangular
hyperbola. Consequently, this conic is nothing but H(P ). To conclude, by Theorem 10, the center Z of this
conic lies on the nine-point circle of the orthocentric system JUJV JW I, which is nothing but (UVW ).

Figure 13: Z lies on the Cevian Circle (UVW )
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6 Applications
We end with nice consequences of the theory developed above, which are rather difficult to prove using elemen-
tary synthetic geometry.

6.1 The Big Picture
Theorem 14 (Nine Concurrent Circles). Let A,B,C and D be any four points in a plane. Let ΩA denote
the nine-point circle of 4BCD, and define ΩB ,ΩC and ΩD similarly. Let ΓA denote the pedal circle of A
with respect to 4BCD, and define ΓB, ΓC and ΓD similarly. Finally, let Λ denote the cevian circle (MNJ)
of quadrilateral ABCD, where M ∈ AD ∩ BC, N ∈ AB ∩ CD and J ∈ AC ∩ BD. Then the nine circles
ΩA,ΩB ,ΩC ,ΩD,ΓA,ΓB ,ΓC ,ΓD and Λ concur.

Proof. This is merely a symmetric formulation of Corollary 10.1 and Theorems 12 and 13. The concurrency
point is none other than the Poncelet Point Z of quadrilateral ABCD, the center of the rectangular hyperbola
through A,B,C and D.

Figure 14: Nine Concurrent Circles

Remark. The other points of intersections include the midpoints of the six sides of ABCD and the feet from
one vertex to the segments determined by the other three.

Corollary 14.1 (The Anticenter). Let ABCD be a cyclic quadrilateral with circumcircle Ω. Let ΩA denote
the nine-point circle of 4BCD, and define ΩB ,ΩC and ΩD similarly. Let lA denote the Simson Line of A with
respect to 4BCD, and define lB , lC and lD similarly. Finally, let HA denote the orthocenter of 4BCD, and
define HB ,HC and HD similarly. Then lA, lB , lC , lD,ΩA,ΩB ,ΩC and ΩD concur at the common bisection point
of AHA, BHB , CHC and DHD.

This point of concurrency is called the anticenter of cyclic quadrilateral ABCD.

Proof. In the case when the four points are cyclic, the pedal circles degenerate to Simson Lines. We can use
Theorems 4, 10 and 14 to see that the anticenter is none other than the Poncelet Point Z of quadrilateral
ABCD.

Corollary 14.2. With notation as before, quadrilateral HAHBHCHD is cyclic and homothetic to ABCD, the
homothety being H(Z,−1) : ABCD 7→ HAHBHCHD.
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Figure 15: Anticenter

Remark. The standard way to prove the existence of the anticenter is using complex numbers and setting the
circumcircle Ω to be the unit circle {z : z ∈ C, |z| = 1}. Then the complex number z denoting the anticenter of
points A,B,C and D given by a, b, c and d respectively is given by:

z =
a+ b+ c+ d

2

6.2 Feuerbach’s Theorem and the Feuerbach Hyperbola
Theorem 15 (Feuerbach’s Theorem). The nine-point circle Ω9 of a triangle 4ABC is tangent to its incircle
ω and three excircles ωA, ωB , ωC .

Proof. This proof was taken from [3]. Let P and Q be isogonal conjugates with respect to 4ABC, and let O
denote the circumcenter of 4ABC. By the Six Point Circle Theorem, which can be found in [2], they share a
common pedal circle; call this pedal circle ωPQ. Then from Theorems 10 and 12, ωPQ meets Ω9 in the Poncelet
Points ZP and ZQ of P and Q respectively, with respect to 4ABC.

Now H(P ) and H(Q) are distinct lines iff QO and PO are distinct lines, as these are the isogonal conjugates
of the hyperbolae. In this case, ZP 6= ZQ and |ωPQ ∩ Ω9| = 2.

If we let the lines PO and QO move closer to each other, the ZP and ZQ move closer to each other on the
nine-point circle. Consequently if P,O,Q are collinear, then ωPQ and Ω9 touch. In the particular case when
P ≡ Q is the incenter or one of the excenters, we get Feuerbach’s Theorem.

Figure 16: Feuerbach’s Theorem

Remark. The point of tangency between ω and Ω9 is called the Feuerbach Point F of 4ABC. It is the
ETC center X11. The points of tangency with the excircles, denoted by FA, FB and FC respectively form the
Feuerbach triangle of 4ABC.
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Theorem 16 (The Feuerbach Hyperbola). The isogonal conjugate of the line OI of a triangle has its center
at F . This hyperbola H(I), called the Feuerbach Hyperbola of 4ABC, passes through the Gergonne Point GE,
the Nagel Point N , the Mittenpunkt M and the Schiffler Point S of 4ABC.

Proof. The center of the hyperbola H(I) must lie on the pedal circle ω of I by Theorem 12, and must lie on the
nine-point circle Ω9 of 4ABC by Theorem 10. But we know from Theorem 15 that these circles are tangent at
F and hence F must be the desired center of H(I). It is well-known (see [2]) that the isogonal conjugate of the
Gergonne Point GE (X7) is X55, the in-similicenter of the incircle ω and circumcircle Ω of 4ABC, and that
the isogonal conjugate of the Nagel Point N (X8) is X56, the ex-similicenter of ω and Ω. Both of these centers
of similitude of ω and Ω obviously belong to the line OI and hence their isogonal conjugates belong to H(I).

The isogonal conjugate of the Mittenpunkt M (X9) of 4ABC, called the Isogonal Mittenpunkt, is X57, the
homothetic center of the contact and excentral triangles of 4ABC. This result can be found in [5]. Because
this homothetic center takes I to V , the Bevan Point of 4ABC, it lies on the line V I ≡ OI. This shows that
the Mittenpunkt lies on H(I).

Finally, the isogonal conjugate of the Schiffler Point S (X21) of a triangle is the orthocenter of its intouch
triangle, labelled X65 in the ETC. This can be found in [6]. This point obviously belongs to the Euler Line of
the intouch triangle, which is the OI line of the reference triangle 4ABC. Thus, the Schiffler Point S also lies
on H(I).

Figure 17: The Feuerbach Hyperbola H(I)

Remark. The line OI is tangent to its isogonal conjugate H(I). This can be seen by an obvious proof by
contradiction.
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