Rectangular Circumhyperbolae

Gaurav Goel
gmgoel@gmail.com
gauravgoel@college.harvard.edu

April 30, 2019

Abstract

This paper deals with the Euclidean properties of rectangular circumhyperbolae with respect to a triangle using as little analytic treatment as possible. Familiarity with projective geometry, specifically ideal points, conic sections and Pascal's Theorem, is assumed.

Contents

1 Introduction to Circumconics 2
2 Revisiting Wallace-Simson Lines 2
3 Two Useful Theorems on Conics 5
3.1 Brocard's Theorem 5
3.28 Points on a Conid 5
4 Onto Rectangular Circumhyperbolae 6
5 The Circles Z Belongs To 8
5.1 The Pedal Circle 8
5.2 The Cevian Circle 8
6 Applications 9
6.1 The Big Picture 9
6.2 Feuerbach's Theorem and the Feuerbach Hyperbola 10
References 11

1 Introduction to Circumconics

In this paper, the symbol \measuredangle represents a directed angle modulo π.
Theorem 1. The isogonal conjugate l^{*} of a line l in the plane of $\triangle A B C$ is a circumconic of $\triangle A B C$.
Proof. We use homogenous barycentric coordinates. Let the line be $l \equiv u x+v y+w z=0$. Isogonal conjugation maps $P(x: y: z) \mapsto P^{*}\left(\frac{a^{2}}{x}: \frac{b^{2}}{y}: \frac{c^{2}}{z}\right)$. Therefore the line l is mapped to $l^{*} \equiv \frac{u a^{2}}{x}+\frac{v b^{2}}{y}+\frac{w c^{2}}{z}=0 \equiv$ $u a^{2} y z+v b^{2} z x+w c^{2} x y=0$, which is a second-degree curve and hence a conic. The reason it passes through the vertices is because a sequence of points on l converging to $l \cap B C$ have isogonal conjugates converging to A. Because isogonal conjugation is a continuous mapping, continuity ensures that $A \in l^{*}$. The other vertices also lie on l^{*} by symmetry.

Theorem 2. The isogonal conjugate of the ideal line is the circumcircle Ω of $\triangle A B C$.
Proof. The ideal line $l_{\infty} \equiv x+y+z=0$ is mapped to $a^{2} y z+b^{2} z x+c^{2} x y=0$, which is nothing but $\Omega \equiv(A B C)$.

Aliter. This theorem can also be proved by angle chasing. We show that the isogonal conjugate of a point P is an ideal point iff $P \in \Omega$. For that, let r_{a}, r_{b} and r_{c} be the lines isogonal to $A P, B P$ and $C P$ with to respect the corresponding vertices.
First assume that $P \in \Omega$. Then $\measuredangle\left(A B, r_{a}\right)=\measuredangle P A C=\measuredangle P B C=\measuredangle\left(A B, r_{b}\right)$, hence $r_{a} \| r_{b}$. By symmetry, r_{c} is also parallel to these lines and hence these concur at a point at infinity. For the converse, assume that $r_{a}\left\|r_{b}\right\| r_{c}$. Using essentially the same argument, $\measuredangle P A C=\measuredangle\left(A B, r_{a}\right)=\measuredangle\left(A B, r_{b}\right)=\measuredangle P B C \Longrightarrow P \in \Omega$.

Figure 1: $\Omega^{*} \equiv l_{\infty}$

Corollary 2.1. The nature of the circumconic l^{*} may be determined by counting the number of intersections of l with $\Omega \equiv(A B C)$. In particular, l^{*} is an ellipse, parabola or hyperbola according to whether l meets Ω in 0 , 1 or 2 points respectively.

Theorem 3. l^{*} is a rectangular hyperbola iff l is a diameter of Ω. Equivalently, l^{*} is a rectangular hyperbola iff $H \equiv O^{*} \in l^{*}$.

Proof. Suppose that $l \cap \Omega=\left\{X_{1}, X_{2}\right\}$. Then l^{*} is a hyperbola with points at infinity $Y_{1}=X_{1}^{*}$ and $Y_{2}=X_{2}^{*}$. By isogonal conjugates, $\measuredangle Y_{1} A Y_{2}=-\measuredangle X_{1} A X_{2}$ and hence the angle between the asymptotes of l^{*} is the angle subtended by $X_{1} X_{2}$ at Ω. In particular, the asymptotes are perpendicular iff $X_{1} X_{2}$ is a diameter of Ω.

2 Revisiting Wallace-Simson Lines

Since we will need the discussion of Wallace-Simson lines in the following article, it is worth revising their properties.

Theorem 4. Let l_{P} denote the Simson line of $P \in \Omega \equiv(A B C)$ with respect to $\triangle A B C$, and let H denote the orthocenter of $\triangle A B C$. Then l_{P} bisects $P H$, and this point of bisection lies on the nine-point circle Ω_{9} of $\triangle A B C$.

Proof. This proof can be found in [1].
Let X, Y and Z be the feet of perpendiculars from P to $B C, C A$ and $A B$ respectively. By definition, $X, Y, Z \in$ l_{P}. Let $A H$ meet Ω again in $H^{\prime} \neq A$ and let $P X$ meet Ω again in $K^{\prime} \neq P$. Let K be the orthocenter of $\triangle P B C$. Then, we know that $K^{\prime} H^{\prime}$ is the image of $K H$ in $B C$. Let $L \in l_{P} \cap A H$. Then $L A \| X K^{\prime}$ and $\measuredangle A K^{\prime} P=\measuredangle A B P=\measuredangle Z B P=\measuredangle Z X P$ where the last equality follows because $P Z X B$ is cyclic with diameter $P B . \therefore A K^{\prime} \| l_{P} \equiv L X \Longrightarrow A L X K^{\prime}$ is a parallelogram.
Because $A H \| P K$ and $A H=P K=2 R \cos A, A H K P$ is also a parallelogram. Consequently, $L H \| P X$ along with $L H=L A+A H=X K^{\prime}+P K=K X+P K=P X$ implies that $P L H X$ is also a parallelogram. Therefore, $L X \equiv l_{P}$ bisects $P H$. Moreover, because the homothety $\mathbb{H}\left(H, \frac{1}{2}\right)$ maps Ω to Ω_{9}, the midpoint of $P H$ also lies on Ω_{9}.

Figure 2: Simson line bisects the segment PH
Aliter. This proof is due to Ross Honsberger, and was taken from [2].
With notation as in the previous proof, let D be the foot of altitude from A and let $E \in P H^{\prime} \cap B C$. Further, let M be the midpoint of $P E$. Since the triangles $\triangle H E H^{\prime}$ and $\triangle X M E$ are isosceles, $\measuredangle M X E=\measuredangle X E M=$ $\measuredangle C E H^{\prime}=\measuredangle H E C$, we get that $M X \| H E$. But on the other hand, becuase $P Y C X$ is cyclic, $\measuredangle Y X C=$ $\measuredangle Y P C=\frac{\pi}{2}-\measuredangle P C A=\frac{\pi}{2}-\measuredangle P H^{\prime} A=\measuredangle C E H^{\prime}=\measuredangle H E C$ and hence $l_{P} \| H E$. This means that $M \in l_{P}$ and that l_{P} is the P-midline of $\triangle P E H$. Therefore, it passes through the midpoint of $P H$. We can finish with $\mathbb{H}\left(H, \frac{1}{2}\right)$ as before.

Figure 3: Another proof that Simson line bisects PH

Theorem 5. Let P and P^{\prime} be antipodes of Ω. Then $P^{* *}$, the isogonal conjugate of P^{\prime}, is the ideal point of l_{P}.
Proof. With the same notation as before, because $A K^{\prime} \| l_{P}$ and because $P Y A Z$ is cyclic, $\measuredangle B A K^{\prime}=\measuredangle A Z Y=$ $\measuredangle A P Y$. Further, because $A P \perp A P^{\prime}$ and $P Y \perp A C$, we get $\measuredangle A P Y=\frac{\pi}{2}-\measuredangle Y A P=\measuredangle P^{\prime} A C$. Therefore, finally, $\measuredangle B A K^{\prime}=\measuredangle P^{\prime} A C$, which means that the isogonal conjugate of P^{\prime} lies on $A K^{\prime}$ and hence on l_{P}.

Figure 4: $P^{*} \in l_{P}$
Theorem 6. If $P, Q \in \Omega$, the $\measuredangle\left(l_{P}, l_{Q}\right)$ is negative of the angle subtended by arc $P Q$ in Ω.
Proof. Let perpendiculars from P and Q to $B C$ meet Ω again in P_{1} and Q_{1} other than P and Q respectively. Then $P P_{1} Q Q_{1}$ (not necessarily in that order) is an isosceles trapezium. Moreover, from the first proof of Theorem 4 , we know that $l_{P} \| A P_{1}$ and $l_{Q} \| A Q_{1}$. Hence, $\measuredangle\left(l_{P}, l_{Q}\right)=\measuredangle P_{1} A Q_{1}=\measuredangle P_{1} P Q_{1}=-\measuredangle P P_{1} Q$. Consequently, $\measuredangle\left(l_{P}, l_{Q}\right)=-\measuredangle P S Q$ for $S \in \Omega$ as required.

Figure 5: $\measuredangle\left(l_{P}, l_{Q}\right)=-\measuredangle P S Q$ for $S \in \Omega$. The negative angles are highlighted in a different shade.
Corollary 6.1. Simson lines of antipodal points are perpendicular.
Corollary 6.2. Because isogonal lines of antipodal points are perpendicular, Theorem 5 means that the Simson line of a point is perpendicular to its isogonal line.

Theorem 7. Simson lines of antipodal points P and P^{\prime} of Ω intersect on Ω_{9}.
Proof. Let M and M^{\prime} be the midpoints of $P H$ and $P H^{\prime}$ respectively. Because $\mathbb{H}\left(H, \frac{1}{2}\right): P P^{\prime} \mapsto M M^{\prime}, M$ and M^{\prime} are antipodal on Ω_{9}. Further, by Corollary 6.1, $l_{P} \perp l_{P^{\prime}}$. If $X_{P} \in l_{P} \cap l_{P^{\prime}}$ then $\measuredangle M X_{P} M^{\prime}=\frac{\pi}{2}$, because of which $X_{P} \in \Omega_{9}$.

This theorem, as it turns out, links very beautifully with the concept of the asymptotes of rectangular circumhyperbolae, as the following sections will develop.

Figure 6: Simson lines of antipodal points meet on Ω_{9}

3 Two Useful Theorems on Conics

3.1 Brocard's Theorem

Theorem 8 (Brocard's Theorem). Let $A B C D$ be a quadrilateral inscribed in a conic \mathcal{C}. Let $M \in A D \cap B C$, $N \in A B \cap C D, P \in A A \cap C C, Q \in B B \cap D D$ and $J \in A C \cap B D$. (Here $A A$ means the tangent to \mathcal{C} at A and so on.) Then M, N, P and Q are all collinear on the polar j of J with respect to \mathcal{C}.

Proof. By Pascal's Theorem on $A A B C C D, P \in M N$. Similarly, by Pascal's Theorem on $A B B C D D, Q \in M N$. Moreover, since the J belongs to $A C$, the polar of P and to $B D$, the polar of Q, La Hire's Theorem tells us that $P Q \equiv j$ as needed.

Figure 7: Brocard's Theorem

3.28 Points on a Conic

Theorem 9. For a quadrilateral $A B C D$, assign M, N and J as before, i.e. let $M \in A D \cap B C, N \in A B \cap C D$ and $J \in A C \cap B D$. Suppose that quadrilaterals $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are assigned the same M, N and J. Then the 8 points $A, B, C, D, A^{\prime}, B^{\prime}, C^{\prime}, D^{\prime}$ lie on a conic.

Proof. Consider the projective transformation that maps $M N$ to the ideal line. Then $A B C D$ and $A^{\prime} B^{\prime} C^{\prime} D^{\prime}$ are mapped to concentric parallelograms with parallel sides which clearly determine the degenerate conic $A C \cup$ $B D$.

Figure 8: 8 Points on a Conic

4 Onto Rectangular Circumhyperbolae

Since a conic is completely determined by five points, Theorem 3 tells us that a rectangular circumhyperbola of $\triangle A B C$ is characterized completely by the fifth point P it contains. Let $\mathcal{H}(P)$ denote the rectangular circumhyperbola containing P. Further, let Z be the center of $\mathcal{H}(P)$. Then Z is called the Poncelet Point of P with respect to $\triangle A B C$, or in a more symmetric formulation, the Poncelet Point of the quadrilateral $A B C P$.

Theorem 10. Z lies on the nine-point circle Ω_{9} of the orthocentric system $A B C H$.
Proof. This proof was taken from the online blog linked in [3]. Let D be the fourth intersection of $\mathcal{H}(P)$ with $\Omega \equiv(A B C)$ and let H^{\prime} be the orthocenter of $\triangle D B C$. By Theorem $3, H^{\prime} \in \mathcal{H}(P)$. Moreover, $A H H^{\prime} D$ is a parallelogram inscribed in a hyperbola $\mathcal{H}(P)$. Applying Brocard's Theorem to $A H H^{\prime} D$, the center of the parallelogram $A H H^{\prime} D$ must be the pole of the ideal line l_{∞} with respect to $\mathcal{H}(P)$, which is none other than its center Z. Hence, Z is the midpoint of $H D$ and once again using $\mathbb{H}\left(H, \frac{1}{2}\right): D \mapsto Z$, we get that $Z \in \Omega_{9}$.

Figure 9: $Z \in \Omega_{9}$
Corollary 10.1. Given any four points A, B, C and D in a plane, the nine-point circles of $\triangle A B C, \triangle B C D$, $\triangle C D A$ and $\triangle D A B$ concur.

Proof. Consider the rectangular hyperbola \mathcal{H} that passes through A, B, C and D. Then its center Z, the Poncelet Point of quadrilateral $A B C D$, is the desired point of concurrency.

Figure 10: Z as the point of concurrency. Here Ω_{A} denotes the nine-point circle of $\triangle B C D$ and so on.
Remark. An elementary proof of this result and further reading about the Poncelet Point can be found in [4].
Theorem 11 (Main Theorem). Let $P Q$ be a diameter of $\Omega \equiv(A B C)$ and let \mathcal{H} denote the rectangular circumhyperbola that is the isogonal conjugate of the line $P Q$ with respect to $\triangle A B C$. Then the asymptotes of \mathcal{H} are the Simson lines l_{P} and l_{Q} of P and Q respectively with respect to $\triangle A B C$.

Proof. As previously, let D be the fourth intersection of \mathcal{H} with Ω and let Z be the center of \mathcal{H}. Let O denote the circumcenter of $\triangle A B C$ and let A^{\prime} denote the antipode of A in Ω. Let $F \in P D \cap B C$ and $E \in l_{P} \cap B C$. Let P^{\prime} and Q^{\prime} be the midpoints of $P H$ and $Q H$ respectively. Finally, let the line parallel to $P Q$ through A meet Ω again in G.

We know from Theorem that $P^{\prime} \in l_{P}$ and from Theorem 5 that $Q^{*} \in l_{P}$. Because Q^{*} is one of the points at infinity of \mathcal{H}, l_{P} is parallel to one of the asymptotes of \mathcal{H}. Hence, to show that it is one of the asymptotes, it suffices to show that $Z \in l_{P}$. The fact that l_{Q} is the other asymptote follows by symmetry.

We know that $B C$ is the Simson line of A^{\prime} with respect to $\triangle A B C$. Using Theorem $6, \measuredangle\left(B C, l_{P}\right)=$ $\measuredangle\left(l_{A^{\prime}}, l_{P}\right)=-\measuredangle A^{\prime} Q P=\measuredangle P Q A^{\prime}$. But because of the homothety $\mathbb{H}(O,-1): \triangle A^{\prime} Q P \mapsto \triangle A P Q, \measuredangle P Q A^{\prime}=$ $\measuredangle Q P A$, which in turn equals $\measuredangle G A P$ because of our stipulation that $A G \| P Q$. Therefore, $\measuredangle\left(B C, l_{P}\right)=$ $\measuredangle G A P=\measuredangle G A C+\measuredangle C A P$.

Because D is the isogonal conjugate of the ideal point of $P Q$ with respect to $\triangle A B C, A D$ and $A G$ are isogonal with respect to $\angle B A C$ implying that $\measuredangle G A C=\measuredangle B A D$. Consequently, $\measuredangle\left(B C, l_{P}\right)=\measuredangle B A D+\measuredangle C A P=$ $\measuredangle B A P+\measuredangle C A D$. However, $\measuredangle B A P=\measuredangle B D P=\measuredangle B D F$ and $\measuredangle C A D=\measuredangle C B D=\measuredangle F B D$. Summing up, $\measuredangle\left(B C, l_{P}\right)=\measuredangle B D F+\measuredangle F B D=\measuredangle B F D=\measuredangle(B C, P D) \Longrightarrow l_{P} \| P D$.

This means that l_{P} is the H-midline of $\triangle P D H$ and contains the midpoint of $D H$, which we know from the proof of the previous theorem to be Z. This concludes the proof.

Figure 11: The Turkish Delight!
Remark 11.1. This is an original proof, although I am confident that this result is known.

5 The Circles Z Belongs To

Let Z be the Poncelet Point of P with respect to $\triangle A B C$. This section develops two cute results taken from [3].

5.1 The Pedal Circle

Theorem 12. Z lies on the pedal circle of P with respect to $\triangle A B C$.
Proof. Let D, E, F be the feet of perpendiculars from P to $B C, C A, A B$ respectively. Let K, L, M denote the midpoints of $A C, A B, A P$ respectively.

Then $\measuredangle E Z F=\measuredangle E Z M+\measuredangle M Z F$. Because of Corollary 10.1, $Z \in(M K E) \cap(M L F)$. Hence, $\measuredangle E Z M=$ $\measuredangle E K M$ and $\measuredangle M Z F=\measuredangle M L F$. Therefore, $\measuredangle E Z F=\measuredangle E K M+\measuredangle M L F=\measuredangle A K M+\measuredangle M L A$.

By midlines, it is evident that $\measuredangle A K M=\measuredangle A C P=\measuredangle E C P$. But $E C D P$ is cyclic, so $\measuredangle E C P=\measuredangle E D P$. Consequently, $\measuredangle A K M=\measuredangle E D P$. Similarly, $\measuredangle M L A=\measuredangle P D F$, so that $\measuredangle E Z F=\measuredangle A K M+\measuredangle M L A=\measuredangle E D P+$ $\measuredangle P D F=\measuredangle E D F \Longrightarrow Z \in(D E F)$.

Figure 12: Z lies on the Pedal Circle ($D E F$)

5.2 The Cevian Circle

Theorem 13. Z lies on the cevian circle of P with respect to $\triangle A B C$.
Proof. Let U, V, W be the feet of cevians in $\triangle A B C$. Let J_{U}, J_{V}, J_{W} and I be the corresponding excenters and incenter of $\triangle U V W$. Applying Theorem 9 to quadrilaterals $A B C P$ and $J_{U} J_{V} J_{W} I$ we get that these 8 points lie on a conic. However, I is the orthocenter of $\triangle J_{U} J_{V} J_{W}$, and therefore this conic must be a rectangular hyperbola. Consequently, this conic is nothing but $\mathcal{H}(P)$. To conclude, by Theorem 10, the center Z of this conic lies on the nine-point circle of the orthocentric system $J_{U} J_{V} J_{W} I$, which is nothing but $(U V W)$.

Figure 13: Z lies on the Cevian Circle $(U V W)$

6 Applications

We end with nice consequences of the theory developed above, which are rather difficult to prove using elementary synthetic geometry.

6.1 The Big Picture

Theorem 14 (Nine Concurrent Circles). Let A, B, C and D be any four points in a plane. Let Ω_{A} denote the nine-point circle of $\triangle B C D$, and define Ω_{B}, Ω_{C} and Ω_{D} similarly. Let Γ_{A} denote the pedal circle of A with respect to $\triangle B C D$, and define Γ_{B}, Γ_{C} and Γ_{D} similarly. Finally, let Λ denote the cevian circle ($M N J$) of quadrilateral $A B C D$, where $M \in A D \cap B C, N \in A B \cap C D$ and $J \in A C \cap B D$. Then the nine circles $\Omega_{A}, \Omega_{B}, \Omega_{C}, \Omega_{D}, \Gamma_{A}, \Gamma_{B}, \Gamma_{C}, \Gamma_{D}$ and Λ concur.

Proof. This is merely a symmetric formulation of Corollary 10.1 and Theorems 12 and 13 . The concurrency point is none other than the Poncelet Point Z of quadrilateral $A B C D$, the center of the rectangular hyperbola through A, B, C and D.

Figure 14: Nine Concurrent Circles
Remark. The other points of intersections include the midpoints of the six sides of $A B C D$ and the feet from one vertex to the segments determined by the other three.

Corollary 14.1 (The Anticenter). Let $A B C D$ be a cyclic quadrilateral with circumcircle Ω. Let Ω_{A} denote the nine-point circle of $\triangle B C D$, and define Ω_{B}, Ω_{C} and Ω_{D} similarly. Let l_{A} denote the Simson Line of A with respect to $\triangle B C D$, and define l_{B}, l_{C} and l_{D} similarly. Finally, let H_{A} denote the orthocenter of $\triangle B C D$, and define H_{B}, H_{C} and H_{D} similarly. Then $l_{A}, l_{B}, l_{C}, l_{D}, \Omega_{A}, \Omega_{B}, \Omega_{C}$ and Ω_{D} concur at the common bisection point of $A H_{A}, B H_{B}, C H_{C}$ and $D H_{D}$.

This point of concurrency is called the anticenter of cyclic quadrilateral $A B C D$.
Proof. In the case when the four points are cyclic, the pedal circles degenerate to Simson Lines. We can use Theorems 4, 10 and 14 to see that the anticenter is none other than the Poncelet Point Z of quadrilateral $A B C D$.

Corollary 14.2. With notation as before, quadrilateral $H_{A} H_{B} H_{C} H_{D}$ is cyclic and homothetic to $A B C D$, the homothety being $\mathbb{H}(Z,-1)$: $A B C D \mapsto H_{A} H_{B} H_{C} H_{D}$.

Figure 15: Anticenter
Remark. The standard way to prove the existence of the anticenter is using complex numbers and setting the circumcircle Ω to be the unit circle $\{z: z \in \mathbb{C},|z|=1\}$. Then the complex number z denoting the anticenter of points A, B, C and D given by a, b, c and d respectively is given by:

$$
z=\frac{a+b+c+d}{2}
$$

6.2 Feuerbach's Theorem and the Feuerbach Hyperbola

Theorem 15 (Feuerbach's Theorem). The nine-point circle Ω_{9} of a triangle $\triangle A B C$ is tangent to its incircle ω and three excircles $\omega_{A}, \omega_{B}, \omega_{C}$.

Proof. This proof was taken from [3]. Let P and Q be isogonal conjugates with respect to $\triangle A B C$, and let O denote the circumcenter of $\triangle A B C$. By the Six Point Circle Theorem, which can be found in [2], they share a common pedal circle; call this pedal circle $\omega_{P Q}$. Then from Theorems 10 and $12, \omega_{P Q}$ meets Ω_{9} in the Poncelet Points Z_{P} and Z_{Q} of P and Q respectively, with respect to $\triangle A B C$.

Now $\mathcal{H}(P)$ and $\mathcal{H}(Q)$ are distinct lines iff $Q O$ and $P O$ are distinct lines, as these are the isogonal conjugates of the hyperbolae. In this case, $Z_{P} \neq Z_{Q}$ and $\left|\omega_{P Q} \cap \Omega_{9}\right|=2$.

If we let the lines $P O$ and $Q O$ move closer to each other, the Z_{P} and Z_{Q} move closer to each other on the nine-point circle. Consequently if P, O, Q are collinear, then $\omega_{P Q}$ and Ω_{9} touch. In the particular case when $P \equiv Q$ is the incenter or one of the excenters, we get Feuerbach's Theorem.

Figure 16: Feuerbach's Theorem
Remark. The point of tangency between ω and Ω_{9} is called the Feuerbach Point F of $\triangle A B C$. It is the ETC center X_{11}. The points of tangency with the excircles, denoted by F_{A}, F_{B} and F_{C} respectively form the Feuerbach triangle of $\triangle A B C$.

Theorem 16 (The Feuerbach Hyperbola). The isogonal conjugate of the line OI of a triangle has its center at F. This hyperbola $\mathcal{H}(I)$, called the Feuerbach Hyperbola of $\triangle A B C$, passes through the Gergonne Point G_{E}, the Nagel Point N, the Mittenpunkt M and the Schiffler Point S of $\triangle A B C$.

Proof. The center of the hyperbola $\mathcal{H}(I)$ must lie on the pedal circle ω of I by Theorem 12, and must lie on the nine-point circle Ω_{9} of $\triangle A B C$ by Theorem 10. But we know from Theorem 15 that these circles are tangent at F and hence F must be the desired center of $\mathcal{H}(I)$. It is well-known (see [2]) that the isogonal conjugate of the Gergonne Point $G_{E}\left(X_{7}\right)$ is X_{55}, the in-similicenter of the incircle ω and circumcircle Ω of $\triangle A B C$, and that the isogonal conjugate of the Nagel Point $N\left(X_{8}\right)$ is X_{56}, the ex-similicenter of ω and Ω. Both of these centers of similitude of ω and Ω obviously belong to the line $O I$ and hence their isogonal conjugates belong to $\mathcal{H}(I)$.

The isogonal conjugate of the Mittenpunkt $M\left(X_{9}\right)$ of $\triangle A B C$, called the Isogonal Mittenpunkt, is X_{57}, the homothetic center of the contact and excentral triangles of $\triangle A B C$. This result can be found in [5]. Because this homothetic center takes I to V, the Bevan Point of $\triangle A B C$, it lies on the line $V I \equiv O I$. This shows that the Mittenpunkt lies on $\mathcal{H}(I)$.

Finally, the isogonal conjugate of the Schiffler Point $S\left(X_{21}\right)$ of a triangle is the orthocenter of its intouch triangle, labelled X_{65} in the ETC. This can be found in [6]. This point obviously belongs to the Euler Line of the intouch triangle, which is the $O I$ line of the reference triangle $\triangle A B C$. Thus, the Schiffler Point S also lies on $\mathcal{H}(I)$.

Figure 17: The Feuerbach Hyperbola $\mathcal{H}(I)$
Remark. The line OI is tangent to its isogonal conjugate $\mathcal{H}(I)$. This can be seen by an obvious proof by contradiction.

References

[1] E. Chen, Euclidean Geometry in Mathematical Olympiads. MAA Press, 2016.
[2] T. Andreescu, S. Korsky, and C. Pohoata, Lemmas in Olympiad Geometry. XYZ Press, 2016.
[3] randomusername, "Rectangular circumhyperbolas." https://artofproblemsolving.com/community/ c2927h1273728_rectangular_circumhyperbolas.
[4] I. Zelich, "The poncelet point and its applications," 2014.
[5] E. W. Weisstein, "Isogonal mittenpunkt." From Mathworld - A wolfram Web Resource. http://mathworld. wolfram.com/IsogonalMittenpunkt.html.
[6] C. Kimberling, "Enyclopedia of triangle centers: X(65) = orthocenter of the intouch triangle." http:// faculty.evansville.edu/ck6/encyclopedia/ETC.html\#X65.

