
Some Genera Computations

Dhruv Goel

December 2023

Abstract

This paper is written in fulfillment of the requirements of Math 293X: Topo-
logical Modular Forms taught by Dr. Stephen McKean at Harvard in the Fall
2023 semester. In this paper, we explain the general theory of multiplicative se-
quences and genera as laid out by Hirzebruch in his seminal textbook [1], following
which we present explicit computations of total K-classes and K-genera for some
multiplicative sequences K on a few closed complex manifolds.
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1 Multiplicative Sequences

1 Multiplicative Sequences

Definition 1.0.1. Let R be a (commutative unitary) ring, and let R[c] be the graded
R-algebra defined by

R[c] := R[c1, c2, . . . ], where for n ≥ 1,we have deg cn = 2n.1

It is often convenient to let c0 := 1. Note that for each n ≥ 0, the degree 2n component
of R[c] is given by

R[c]2n = R[c1, . . . , cn]2n.

Let U1(R) be the group defined by

U1(R) := 1 + zR[[z]] :=

{
∞∑
n=0

qnz
n : qn ∈ R, q0 = 1

}
,

with group operation the multiplication of power series.

• A sequence K = (Kn)n≥0 of elements of R[c] is said to be multiplicative if K0 = 1
and Kn ∈ R[c]2n, and the map

K :
∞∑
n=0

qnz
n 7→

∞∑
n=0

Kn(q1, . . . , qn)z
n

is an endomorphism of the group U1(R).
• Given a multiplicative sequence K, we define its characteristic series QK by

QK(z) := K(1 + z) =
∞∑
n=0

Kn(1, 0, . . . , 0)z
n ∈ R1.

Lemma 1.0.2. The map K 7→ QK(z) is a bijection from the set of all multiplicative
sequences to U1(R).

Proof. We define an inverse map. For each N ≥ 1, let

R[c](N) := R[c][γ1, . . . , γN ]/(cj − σj(γ1, . . . , γN))
N
j=1,

where σj(γ1, . . . , γN) is the jth elementary symmetric polynomial in γ1, . . . , γN . Let
Q(z) ∈ U1(R) be given. Consider the product

N∏
i=1

Q(γiz) ∈ U1

(
R[c](N)

)
.

Since the coefficients of the powers of z in the expansion of this product are symmetric
in the γj, by the Fundamental Theorem of Symmetric Polynomials, they can be written

as polynomials in the cj. Therefore, for n ≥ 0, there are K
(N)
n ∈ R[c]2n such that

N∏
i=1

Q(γiz) =
∞∑
n=0

K(N)
n (c1, . . . , cn)z

n.

1This grading is not the same as the one chosen by Hirzebruch in [1, §1]. The reason for our choice
is that for any complex vector bundle E → X, the evaluation at the Chern classes of E gives us a ring
homomorphism evalE : R[c] → H∗(X;R), which with our convention becomes a morphism of graded
R-algebras. See §2.
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1 Multiplicative Sequences

ForN ≥ n, the polynomialK
(N)
n is independent ofN , and we defineKn to be this common

value. It is then straightforward to check that the resulting sequence K = (Kn)n≥0 is
multiplicative, and that these operations give us inverse bijections. For more details, see
[1, §1].

■

For low degrees, we can write this correspondence out explicitly: if

Q(z) = 1 + q1z + q2z
2 + q3z

3 + · · · ,

then we have

K1 = q1c1,

K2 = q2c
2
1 + (−2q2 + q21)c2,

K3 = q3c
3
1 + (−3q3 + q1q2)c1c2 + (3q3 − 3q1q2 + q31)c3,

and so on.

Example 1.0.3. The sequence K = c defined by Kn = cn is called the identity sequence,
since the corresponding endomorphism K is the identity map on U1(R). Its characteristic
series is Q(z) = 1 + z.

Definition 1.0.4. An element Q(z) ∈ U1(R) is said to be even if Q(z) only consists of
even powers of z, i.e. for each n ≥ 0, the coefficient [z2n+1]Q(z) of z2n+1 in Q(z) is zero, or

equivalently when there is a (necessarily unique) Q̃(z) ∈ U1(R) such that Q(z) = Q̃(z2).

If Q(z) is even, then in the corresponding multiplicative sequence (Kn), we also

have for each n ≥ 0 that K2n+1 = 0. In this case, the sequence of polynomials (K̃n)n≥0

defined by K̃n = K2n is called the corresponding reduced sequence.2

Example 1.0.5. The reduced sequence corresponding to Q(z) = 1 + z2 is called the
Pontryagin sequence and is denoted by (pn). Explicitly, we have for n ≥ 0 that

pn = c2n − 2
n∑

k=1

(−1)kcn−kcn+k.

Again by the Fundamental Theorem of Symmetric Polynomials, this time applied to
the γ2

j , we conclude that if Q(z) is any even series and (K̃n) the corresponding reduced
sequence, then for each n ≥ 0, we have

K̃n ∈ R[p1, . . . , pn]4n,

i.e. K̃n can be written as a polynomial of total degree 4n in the (weighted variables)
p1, . . . , pn.

Suppose for the next three examples that R is a Q-algebra.

2Note that this is not multiplicative in the above sense, and indeed deg K̃n = 4n.
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Example 1.0.6. Consider

QTd(z) :=
z

1− e−z
=

∞∑
n=0

Bn

n!
zn = 1 +

1

2
z +

1

12
z2 − 1

120
z4 +

1

30240
z6 + · · · ,

the exponential generating function of the Bernoulli numbers Bn.
3 The corresponding

multiplicative sequence is called the sequence of Todd polynomials Tdn, and the first few
of these are given by

Td0 = 1

Td1 =
1

2
c1,

Td2 =
1

12
(c21 + c2),

Td3 =
1

24
c1c2,

Td4 =
1

720
(−c41 + 4c21c2 + c1c3 + 3c22 − c4).

Here’s a fun observation:

Lemma 1.0.7. The series QTd(z) is uniquely characterized by the property that for any
n ≥ 0, the coefficient of zn in QTd(z)

n+1 is 1. In particular, the substitution ci :=
(
n+1
i

)
in Tdn yields

Tdn(c1, . . . , cn) = 1.

Proof. The existence and uniqueness of such a series is inductively clear, so it suffices to
show that QTd(z) satisfies this property. Now this coefficient is given by

[zn]QTd(z)
n+1 = [z−1]

1

(1− e−z)n+1
= Res

z=0

1

(1− e−z)n+1
dz.

To compute this residue, write w := 1−e−z, which is a holomorphic change of coordinates
around z = 0, to get

Res
z=0

1

(1− e−z)n+1
dz = Res

w=0

(
1

wn+1
· dw

1− w

)
= 1.

For the second result, note that if ci =
(
n+1
i

)
, then from

1 + c1z + · · ·+ cnz
n ≡ (1 + z)n+1 (mod zn+1),

it follows that

1 + Td1(c1)z + · · ·+ Tdn(c1, . . . , cn)z
n ≡ Td(1 + c1z + · · ·+ cnz

n)

≡ Td(1 + z)n+1

≡ QTd(z)
n+1 (mod zn+1),

so equating the coefficients of zn on both sides yields Tdn(c1, . . . , cn) = 1. ■
3Here we are choosing the “positive” convention B1 = 1/2.
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Example 1.0.8. Consider

QL(z) :=
z

tanh z
=

∞∑
n=0

22nB2n

(2n)!
z2n = 1 +

1

3
z2 − 1

45
z4 +

2

945
z6 + · · · .

The corresponding reduced sequence is called the sequence of L-polynomials and denoted
(Ln). The first few of these are given by

L0 = 1

L1 =
1

3
p1,

L2 =
1

45
(−p21 + 7p2),

L3 =
1

945
(2p31 − 13p1p2 + 62p3),

L4 =
1

14175
(−3p41 + 22p21p2 − 19p22 − 71p1p3 + 831p4).

The series

Q̃L(z) =

√
z

tanh
√
z
:=

∞∑
n=0

22nB2n

(2n)!
zn

is uniquely characterized by the property that for any n ≥ 0, the coefficient of zn in
Q̃L(z)

2n+1 is 1. Indeed, the proof is almost identical to that of Lemma 1.0.7; the interested
reader can see [1, §1].

Example 1.0.9. Consider

QÂ(z) :=
z/2

sinh(z/2)
= 1− 1

24
z2 +

7

5760
z4 − 31

967680
z6 + · · · .

The corresponding reduced sequence is called the sequence of Â-polynomials
and denoted (Ân). The first few of these are given by

Â0 = 1

Â1 = − 1

24
p1,

Â2 =
1

5760
(7p21 − 4p2),

Â3 =
1

967680
(−31p31 + 44p1p2 − 16p3),

Â4 =
1

464486400
(381p41 − 904p21p2 + 208p22 + 512p1p3 − 192p4).
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2 Genera Computations

Let X be a (paracompact, Hausdorff) topological space. For any ring R, let H∗(X;R)
denote the singular cohomology of X with coefficients in R. Associated to each complex
vector bundle E → X and integer n ≥ 0, we have the nth Chern class of E with R-
coefficients

cn(E,R) ∈ H2n(E,R).

Evaluation at these Chern classes yields a graded R-algebra homomoprhism

evalE : R[c] → H∗(X;R).

By functoriality of the U1 construction, we also get an evaluation map

evalE : U1(R[c]) → U1(H
∗(X;R)). (1)

Definition 2.0.1. Let K = (Kn) be a multiplicative sequence in R. The total K-
series of a vector bundle E, denoted K(E, z) ∈ U1(H

∗(X;R)) is the image of the series∑∞
n=0Knz

n ∈ U1(R[c]) under the evaluation map (1).

Example 2.0.2. IfK = c is the identity sequence, then the totalK-series of E is nothing
but the Chern polynomial c(E, z) =

∑∞
n=0 cn(E,R)zn ∈ U1(H

∗(X;R)).4

Note that the Whitney formula for the Chern classes along with the multiplica-
tivity of K implies that for any short exact sequence

0 → E ′ → E → E ′′ → 0

of vector bundles on X, we have the product formula

K(E, z) = K(E ′, z)K(E ′′, z) ∈ U1(H
∗(X;R)). (2)

This, along with the splitting principle, gives us a recipe to compute K(E, z):
indeed, suppose that rankE = r ≥ 0, and we formally factor the Chern polynomial as
c(E, z) =

∏r
i=1(1 + γiz), where the γi are the Chern roots of E. Then (2) tells us that

if the multiplicative sequence K = (Kn) has characteristic series Q(z), then the total
K-series of E can be written as

K(E, z) =
r∏

i=1

Q(γiz).

Here, as before, this means that the coefficients of the powers of z in this product, being
symmetric in the γi, can be written as elementary symmetric polynomials in the γi, which
are the Chern classes of E.

If X has cohomology ring H∗(X;Z) of finite rank over Z as an abelian group
(e.g. if X is a closed manifold or a finite CW complex), then the evaluation of K(E, z) ∈
U1(H

∗(X;R)) at specific z = z0 ∈ R makes sense and gives an element K(E, z0) ∈
H∗(X;R).5

4The name “Chern polynomial” is apt because cn(E,R) ̸= 0 only for finitely many n, namely those
satisfying 0 ≤ n ≤ rankE.

5If H∗(X;Z) does not have finite rank, then this element lies rather in the direct product HΠ(X;R) =∏∞
k=0 H

k(X;R) instead.
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2 Genera Computations

Definition 2.0.3. The total K-class of E, denoted K(E), is simply the total series
K(E, z) of E evaluated at z = 1.

Example 2.0.4. From the examples in §1, if E → X has Chern roots γi, then we have:

(a) the total Chern series c(E, z) =
∏

i(1 + γiz),
(b) the total Pontryagin series p(E, z) =

∏
i(1 + γ2

i z
2),

(c) the total Todd series Td(E, z) =
∏

i γiz/(1− e−γiz),
(d) the total L-series L(E, z) =

∏
i γiz/ tanh(γiz), and

(e) the total Â-series Â(E, z) =
∏

i(γiz/2)/ sinh(γiz/2).

Evaluating these at z = 1 yields, the total Chern, Pontryagin, Todd, L and Â classes
respectively.

Now suppose that X is a closed oriented manifold of dimension N = 2n and
that R = Z. Then HN(X;Z) = ZηX is a free Z-module of rank 1 generated by the class
ηX which is the algebraic dual to the fundamental class [X] ∈ HN(X;Z), i.e. evaluation
at the fundamental class yields an isomorphism

⟨·, [X]⟩ : HN(X;Z) → Z.

Definition 2.0.5. In the above set-up, if K is a multiplicative sequence and E → X a
complex vector bundle, then the K-genus of E is defined by

ΦK(E) := ⟨Kn(E), [X]⟩.

The case of primary interest to us will be when X is a closed complex manifold
of complex dimension n. In this case, when we talk of the total K-class or series or the
K-genus of X, we mean the K-class or series or the K-genus of the holomorphic tangent
bundle TX → X. This gives us the Chern, Pontryagin, Todd, L and Â genera of a closed
complex manifold X. Note that Φp(X) = ΦL(X) = ΦÂ(X) = 0 unless n itself is even,
i.e. n = 2k for some k ≥ 0 and dimX = 4k.6 Somewhat surprisingly, these genera are
often integers, as can be seen from the following fascinating collection of results.

• Let X be a closed complex manifold.

Theorem 2.0.6 (Gauss-Chern-Bonnet). We have Φc(X) = χ(X), where χ(X) is
the topological Euler characteristic of X.

• Let X be a smooth projective variety over C.

Theorem 2.0.7. We have ΦTd(X) = χ(X,X), where χ(X,X) is the holomor-
phic Euler characteristic of X.

• Let X be a smooth manifold of dimension dimX = 4k for some k ≥ 0. The cup
product gives us a symmetric bilinear form on H2k(X;R); we define the signature
sign(X) of X to be the signature of this bilinear form.

Theorem 2.0.8 (Hirzebruch Signature Theorem). We have ΦL(X) = sign(X).

6The L-genus and Â-genus are defined even for closed real smooth manifolds of dimension dimX = 4k
without a complex structure, since in this context the definition of the Pontryagin classes pj(X) still

makes sense, and that total L- and Â-classes can be expressed in terms of the pj(X). We did not build
the theory from this perspective because we will only deal with closed complex manifolds in this paper.
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2 Genera Computations

• Recall that a closed manifold X is said to be spin manifold if it can be given the
structure of an oriented Riemannian manifold whose oriented orthogonal frame
bundle SOn(X) admits a lift to a principal Spinn-bundle Spinn(X). This happens
iff the second Stiefel-Whitney class w2(X) vanishes. In particular, if X is a complex
manifold, then this happens iff c1(X) is even, since in this case w2(X) ≡ c1(X)
(mod 2). (See [2, §II.1-2].)

Theorem 2.0.9. Let X be a spin manifold of dimension dimX = 4k for some
k ≥ 0. Then the Â-genus ΦÂ(X) is an integer. Further, if dimX ≡ 4 (mod 8),
then ΦÂ(X) is even.

• Recall that for a Riemmanian manifold X, the scalar curvature κ : X → R is
defined by averaging all sectional curvatures at a given point, i.e. it is the trace of
the Ricci curvature tensor.

Theorem 2.0.10. If X is a spin manifold of everywhere positive scalar curvature
κ, i.e. κ > 0. Then ΦÂ(X) = 0.

We shall note prove any of these here, but remark that they can all be derived
from the Atiyah-Singer Index Theorem. Indeed, these observations were part of the
impetus that led to the discovery of the Index Theorem. For proofs of all these results,
we refer the reader to [2, Ch. IV] and [1, Thm 20.2.2]. In the rest of the paper, we present
examples of genera computations for some closed complex manifolds.

2.1 Compact Riemann Surfaces

LetX = Σg be a Riemann surface of genus g ≥ 0. Then the integral cohomology H∗(X;Z)
of X is given by

Hk(X;Z) =


Z, if k = 0, 2,

Z2g, if k = 1,

0, else.

The total Chern class of the tangent bundle TX is given by

c(TX) = 1 + (2− 2g)ηX .

This fact is usually stated by saying that the canonical class KX has degree 2g−2, where
KX = c1(T

∨X). It follows that

Φc(X) = 2− 2g and ΦTd(X) = 1− g.

Note that this computation verifies Theorems 2.0.6 and 2.0.7: indeed, we know that the
topological Euler characteristic χ(X) = 2 − 2g, whereas the holomorphic Euler charac-
teristic satisfies

χ(X,X) = h0(X)− h1(X) = 1− g.

(The equality h0(X) = 1 is clear, and by Serre duality we have

h1(X) = h0(ΩX) = g,

either by definition of the genus g or by a standard theorem in the theory of curves.) For
dimension reasons, we have

Φp(X) = ΦL(X) = ΦÂ(X) = 0.
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2 Genera Computations

2.2 Projective Spaces

For n ≥ 0, let Pn be complex projective space of dimension n. Then the cohomology ring
of Pn with coefficients in Z is given by

H∗(Pn;Z) = Z[ζ]/(ζn+1), where |ζ| = 2.

Here ζ is the Poincare dual to the fundamental class of a hyperplane [Pn−1] ∈ H2n−2(Pn;Z),
and the top cohomology H2n(Pn;Z) = ZηPn is generated by ηPn = ζn.

On Pn, we have the line bundles Pn(r) for any r ∈ Z, where Pn(−1) =  is
the tautological bundle and we have for r ∈ Z that Pn(r) = ⊗(−r). Further, for any
r ∈ Z, we have

c1(Pn(r)) = 1 + rζ.

Let  be the tautological quotient bundle on Pn. The tangent bundle TPn of Pn satisfies

TPn ∼= ∨ ⊗.

Twisting the tautological sequence

0 →  → ⊕(n+1)
Pn →  → 0

by ∨ = Pn(1) yields

0 → Pn → Pn(1)⊕(n+1) → TPn → 0.

Therefore, multiplicativity allows us to compute the required total K-classes and genera.

• The total Chern class is given by

c(Pn) = (1 + ζ)n+1 = 1 + (n+ 1)ζ +
n(n+ 1)

2
ζ2 + · · ·+ (n+ 1)ζn.

In particular, the Chern genus is

Φc(Pn) = n+ 1.

This verifies Theorem 2.0.6 in this case because we know that χ(Pn) = n+ 1.
• The total Todd class is given by

Td(Pn) =

(
ζ

1− e−ζ

)n+1

= 1 +
1

2
(n+ 1)ζ +

1

24
(3n2 + 5n+ 2)ζ2 +

1

48
n(n+ 1)2ζ3 + · · · .

For small values of n, these are

Td(P1) = 1 + ζ,

Td(P2) = 1 +
3

2
ζ + ζ2,

Td(P3) = 1 + 2ζ +
11

6
ζ2 + ζ3.

Note that the Todd genus satisfies

ΦTd(Pn) = 1

for n = 1, 2, 3, above; this is true for arbitrary n, and can be explained by Lemma
1.0.7. This verifies Theorem 2.0.7 in this case because we know independently that
hi(Pn,Pn) is 1 for i = 0 and 0 for i ≥ 1, so that χ(Pn,Pn) = 1.
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2 Genera Computations

• The total Pontryagin class

p(Pn) = (1 + ζ2)n+1 = 1 + (n+ 1)ζ2 + · · · ,

where the last term is given by
(
n+1
n/2

)
ζn if 2 | n and

(
n+1

(n−1)/2

)
ζn−1 else. In particular,

if n = 2k is even, then the Pontryagin genus is given by

Φp(P2k) =

(
2k + 1

k

)
.

• The total L-class is given by

L(Pn) =

(
ζ

tanh ζ

)n+1

= 1 +

(
n+ 1

3

)
ζ2 +

(
5n2 + 3n− 2

90

)
ζ4

+

(
35n3 − 42n2 − 65n+ 12

5670

)
ζ6 + · · · .

For small values of n, this is given by

L(P1) = 1,

L(P2) = 1 + ζ2,

L(P3) = 1 +
4

3
ζ2,

L(P4) = 1 +
5

3
ζ2 + ζ4,

L(P5) = 1 + 2ζ2 +
23

15
ζ4,

L(P6) = 1 +
7

3
ζ2 +

98

45
ζ3 + ζ4.

Note again that the L-genus is given by

ΦL(P2k) = 1

for k = 1, 2, 3 above; again, this is true for arbitrary k, and is explained by the
remark at the end of Example 1.0.8. This illustrates the Hirzebruch Signature
Theorem (Theorem 2.0.8), because the signature of the intersection form on the
one-dimensional middle cohomology Hm(P2m,Z) = Zζm is clearly 1.

• Finally, the total Â-class is given by

Â(Pn) =

(
ζ/2

sinh(ζ/2)

)n+1

= 1−
(
n+ 1

24

)
ζ2 +

(
5n2 + 12n+ 7

5760

)
ζ4

−
(
35n3 + 147n2 + 205n+ 93

2903040

)
ζ6 + · · · .
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For small values of n, this is given by

Â(P1) = 1,

Â(P2) = 1− 1

8
ζ2,

Â(P3) = 1− 1

6
ζ2,

Â(P4) = 1− 5

24
ζ2 +

3

128
ζ4,

Â(P5) = 1− 1

4
ζ2 +

1

30
ζ4,

Â(P6) = 1− 7

24
ζ2 +

259

5760
ζ4 − 5

1024
ζ6.

Note some values of the Â-genera:

ΦÂ(P
2) = −1/8, ΦÂ(P

4) = 3/128, ΦÂ(P
6) = −5/1024.

None of these are integers. It follows from Theorem 2.0.9 that P2k is not spin for
k = 1, 2, 3. In fact, Pn is spin iff n ≡ 1 (mod 2) by the condition w2(Pn) = (n+1)ζ
(mod 2).
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2.3 Grassmannians

More generally, for n > k ≥ 0, let X = G(k, n) be the complex Grassmannian of k-planes
in CPn (or equivalently, k + 1-dimensional linear subspaces of Cn+1); this has complex
dimension N = (k + 1)(n− k). Then the cohomology ring

H•(G(k, n);Z) =
⊕
a

Zσa

is freely generated by the Schubert classes σa, where we index over the set of all sequences
a = (a0, . . . , an−k) of integers satisfying n − k ≥ a0 ≥ a1 ≥ · · · ≥ ak ≥ 0. Note that the
top cohomology group

H2N(G(k, n);Z) = ZηG(k,n)

is generated by the Schubert class

ηG(k,n) = σ(n−k)k .
7

On G(k, n), we have again the tautological bundle  of rank k + 1 and the
tautological quotient bundle  of rank n − k, and again the tangent bundle TG(k, n)
satisfies

TG(k, n) ∼= ∨ ⊗. (3)

The Chern classes of ∨ and  are given by

c(∨) = 1 + σ1 + · · ·+ · · ·+ σ1k+1 and c() = 1 + σ1 + · · ·+ σn−k;

these can be computed in various ways, but one is to use the explicit description of
Chern classes as the cohomology classes corresponding to degeneracy loci of sections (see
[3, §5.6.2]). If α1, . . . , αk+1 are the Chern roots of  and β1, . . . , βn−k the Chern roots of
, then the Chern roots of TG(k, n) are the αi+βj, and this gives us, in principle, a way
to compute the total K-classes and K-genera for G(k, n). However, the formulae seem
to be rather complicated at this level of generality.8 With the help of Macaulay 2, let’s
work out some examples in full detail: namely G(1, n) for n = 3, 4, 5.

7Here, as always, (n− k)k means n− k, . . . , n− k repeated k times.
8You can nonetheless extract some information. For instance, it follows immediately that

c1(G(k, n)) = n+ 1, so that G(k, n) is spin iff n is odd.
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2 Genera Computations

2.3.1 G(1, 3)

Consider G(1, 3), which has dimension N = 4.

• The total Chern class of G(1, 3) is given by

c(G(1, 3)) = 1 + 4σ1 + 7(σ1,1 + σ2) + 12σ2,1 + 6σ2,2,

so that in particular the Chern genus is

Φc(G(1, 3)) = 6.

This verifies Theorem 2.0.6 in this case because

χ(G(1, 3)) = rankZH
∗(G(1, 3);Z) = 6.

• The total Todd class of G(1, 3) is given by

Td(G(1, 3)) = 1 + 2σ1 +
23

12
(σ1,1 + σ2) +

7

3
σ2,1 + σ2,2,

so that the Todd genus
ΦTd(G(1, 3)) = 1.

This verifies Theorem 2.0.7 in this case because it can be shown independently that

χ(G(1, 3),G(1,3)) = 1;

see Remark 1.
• The total Pontryagin class of G(1, 3) is given by

p(G(1, 3)) = 1 + 2(σ1,1 + σ2) + 14σ2,2,

so that the Pontryagin genus is

Φp(G(1, 3)) = 14.

• The total L-class of G(1, 3) is given by

L(G(1, 3)) = 1 +
2

3
(σ1,1 + σ2) + 2σ2,2,

so that the L-genus is
ΦL(G(1, 3)) = 2.

This verifies Theorem 2.0.8 in this case, since in the middle cohomology group
H4(G(1, 3)) = Zσ1,1 ⊕ Zσ2, the classes σ1,1 and σ2 are orthonormal.

• The total Â-class of G(1, 3) is given by

Â(G(1, 3)) = 1− 1

12
(σ1,1 + σ2),

so that that Â-genus
ΦÂ(G(1, 3)) = 0.

This verifies Theorem 2.0.9 in this case, since G(1, 3) is spin, as observed above; see
also Remark 1.

13
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2.3.2 G(1, 4)

Consider G(1, 4), which has dimension N = 6.

• The total Chern class of G(1, 4) is given by

c(G(1, 4)) = 1 + 5σ1 + (12σ1,1 + 11σ2) + (30σ2,1 + 15σ3)

+ (25σ2,2 + 35σ3,1) + 30σ3,2 + 10σ3,3,

so that the Chern genus is
Φc(G(1, 4)) = 10.

This verifies Theorem 2.0.6 in this case because

χ(G(1, 4)) = rankZH
∗(G(1, 4);Z) = 10.

• The total Todd class of G(1, 4) is given by

Td(G(1, 4)) = 1 +
1

2
5σ1 +

1

12
(37σ1,1 + 36σ2) +

1

24
(115σ2,1 + 55σ3)

+
1

72
(197σ2,2 + 287σ3,1) +

35

12
σ3,2 + σ3,3.

so that the Todd genus
ΦTd(G(1, 4)) = 1.

As above, this verifies Theorem 2.0.7 in this case; see Remark 1.
• The total Pontryagin class of G(1, 4) is given by

p(G(1, 4)) = 1 + (σ1,1 + 3σ2) + (15σ2,2 + 5σ3,1) + 35σ3,3,

so that the Pontryagin genus is

Φp(G(1, 4)) = 35.

• The total L-class of G(1, 4) is given by

L(G(1, 4)) = 1 +
1

3
(σ1,1 + 3σ2) +

1

9
(19σ2,2 + 4σ3,1) + 2σ3,3,

so that the L-genus is
ΦL(G(1, 4)) = 2.

This verifies Theorem 2.0.8 in this case, since in the middle cohomology group
H6(G(1, 4)) = Zσ2,1 ⊕ Zσ3, the classes σ2,1 and σ3 are orthonormal.

• The total Â-class of G(1, 4) is given by

Â(G(1, 4)) = 1− 1

24
(σ1,1 + 3σ2) +

1

1152
(2σ2,2 + 17σ3,1)−

1

1024
σ3,3.

so that that Â-genus
ΦÂ(G(1, 4)) = −1/1024.

Theorem 2.0.9 tells us that G(1, 4) is not spin, which we knew already from the
parity of c1(G(1, 4)).

14
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2.3.3 G(1, 5)

Consider G(1, 5), which has dimension N = 8.

• The total Chern class of G(1, 5) is given by

c(G(1, 5)) = 1 + 6σ1 + (18σ1,1 + 16σ2) + (58σ2,1 + 26σ3)

+ (67σ2,2 + 91σ3,1 + 31σ4,0) + (120σ3,2 + 90σ4,1)

+ (65σ3,3 + 105σ4,2) + 60σ4,3 + 15σ4,4

so that the Chern genus is
Φc(G(1, 5)) = 15.

This verifies Theorem 2.0.6 in this case because

χ(G(1, 5)) = rankZH
∗(G(1, 5);Z) = 15.

• The total Todd class of G(1, 5) is given by

Td(G(1, 5)) = 1 + 3σ1 +
1

6
(27σ1,1 + 26σ2) +

1

2
(17σ2,1 + 8σ3)

+
1

720
(4325σ2,2 + 6221σ3,1 + 1901σ4,0) +

1

120
(953σ3,2 + 713σ4,1)

+
1

720
(2501σ3,3 + 4301σ4,2) +

1

30
(101σ4,3) + σ4,4

so that the Todd genus
ΦTd(G(1, 5)) = 1.

As above, this verifies Theorem 2.0.7 in this case; see Remark 1.
• The total Pontryagin class of G(1, 5) is given by

p(G(1, 5)) = 1 + 4σ2 + (18σ2,2 + 6σ3,1 + 6σ4) + (26σ3,3 + 42σ4,2) + 141σ4,4,

so that the Pontryagin genus is

Φp(G(1, 5)) = 141.

• The total L-class of G(1, 5) is given by

L(G(1, 5)) = 1 +
4

3
σ2 +

1

45
(105σ2,2 + 26σ3,1 + 26σ4) +

1

45
(68(σ3,3 + σ4,2) + 3σ4,4,

so that the L-genus
ΦL(G(1, 5)) = 3.

This verifies Theorem 2.0.8 in this case, since in the middle cohomology group
H8(G(1, 4)) = Zσ2,2 ⊕ Zσ3,1 ⊕ Zσ4, the classes σ2,2, σ3,1, and σ4 are orthonormal.

• The total Â-class of G(1, 5) is given by

Â(G(1, 5)) = 1− 1

6
σ2 +

1

720
(5σ2,2 + 11σ3,1 + 11σ4,0)−

1

720
(σ3,3 + σ4,2)

so that the Â-genus
ΦÂ(G(1, 5)) = 0.

This verifies Theorem 2.0.9 in this case since G(1, 5) is spin, as observed above; see
also Remark 1.
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Remark 1. Here are a few observations from these computations:

(a) We found above that the Todd genera of Grassmannians satisfy

ΦTd(G(k, n)) = 1

for k = 1, n = 3, 4, 5.9 This is true for general k and n and can be seen from The-
orem 2.0.7, the Borel-Weil-Bott Theorem, and the fact that G(k, n) are complete
homogenous spaces: the cohomology groups Hi(X,X) for any complete homoge-
nous space X = G/P (where G is a semisimple complex Lie group) are all zero for
i > 0, whereas H0(X,X) = C, so that χ(X,X) = 1 as needed.

(b) We found that the L-genera of the Grassmannians of lines satisfy

ΦL(G(1, n)) =

⌊
n− 1

2

⌋
+ 1

for n = 3, 4, 5. This is true for general n by Theorem 2.0.8. Indeed, the middle
cohomology

H2n−2(G(1, n)) =

⌊(n−1)/2⌋⊕
k=0

Zσn−1−k,k,

and it follows from Pieri’s formula (see [3, Prop. 4.11]) that these Schubert classes
are orthonormal. Similarly, it should be possible to obtain a combinatorial formula
for ΦL(G(k, n)) in general.

(c) We found above that
ΦÂ(G(1, 2n+ 1)) = 0

for n = 1, 2, even though Theorem 2.0.9 only requires this quantity to be an integer.
Again, this is true for general n and can be explained by Theorem 2.0.10 since these
Grassmannians have positive scalar curvature under the pullback (or equivalently
restriction) of the Fubini-Study metric on P2n2+3n by the Plücker embedding, as
can be checked explicitly.

9The previous section shows that the result is also true for arbitrary n when k = 0.
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2.4 Hypersurfaces

For integers d, n ≥ 1, let X = Xn
d ⊂ Pn+1 be a smooth hypersurface of degree d. Then

from the normal sequence

0 → TX → TPn+1|X → X/Pn+1 → 0

along with the identification
X/Pn+1

∼= X(d),

follows that the Chern class of X is given by

c(X) =
(1 + ζX)

n+2

1 + dζX
= 1 + (n+ 2− d)ζX + · · · ,

where ζX = ζ|X ∈ H2(X;Z) is the restriction of the hyperplane class to X. Since ζX is
the restriction of the standard Kähler class, it follows that it is indivisible by two, and
hence that X = Xn

d is spin iff n ≡ d (mod 2). Finally, we have that

ζnX = dηX ,

since d is the degree of X. Next, from this computation and the Lefschetz Hyperplane
Theorem, we can compute the cohomology groups of X as

Hk(X;Z) =


Z, k = 0, 2, . . . , 2n, except k = n if 2 | n,
Zbn,d , k = n,

0, else,

where bn,d is the unique integer that makes the topological Euler characteristic

χ(X) =
n∑

i=0

(−1)i
(
n+ 2

n− i

)
di+1.

See [3, §5.7.3] for more details. Let’s analyze the case n = 2 in more detail. We have

b2,d = d3 − 4d2 + 6d− 2.

We now compute away:

• The total Chern class is given by

c(X2
d) = 1 + (4− d)ζX + (d3 − 4d2 + 6d)ηX ,

so that the Chern genus is

Φc(X
2
d) = d3 − 4d2 + 6d,

which agrees with χ(X2
d), verifying Theorem 2.0.6 in this case.

• The total Todd class of X2
d is given by

Td(X2
d) = 1 +

1

2
(4− d)ζX +

1

6
d(d2 − 6d+ 11)ηX ,

17
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so that the Todd genus is

ΦTd(X
2
d) =

1

6
d(d2 − 6d+ 11) = 1 +

(
d− 1

3

)
.

On the other hand, we can also compute χ(X,X) directly: from the short exact
sequence

0 → P3(−d) → P3 → X → 0

of sheaves on P3, we conclude that

χ(X,X) = χ(P3,P3)− χ(P3,P3(d)) = 1−
(
−
(
d− 1

3

))
= 1 +

(
d− 1

3

)
,

where we have used our knowledge of the cohomology of line bundles on Pn. This
verifies Theorem 2.0.7 in this case.

• The total Pontryagin class of X2
d is given by

p(X2
d) = 1− (d3 − 4d)ηX ,

so that the Pontryagin genus is

Φp(X
2
d) = d3 − 4d.

• The total L class of X2
d is given by

L(X2
d) = 1− 1

3
(d3 − 4d)ηX ,

so that the L-genus is

ΦL(X
2
d) = −1

3
(d3 − 4d) = −2

(
d+ 1

3

)
+ d.

• The total Â class of X2
d is given by

Â(X2
d) = 1 +

1

24
(d3 − 4d)ηX ,

so that the Â-genus is

ΦÂ(X
2
d) =

1

24
(d3 − 4d).

This is an integer iff d is even, in which case, we can write

ΦÂ(X
2
d) = 2

(
(d+ 2)/2

3

)
,

so that in fact, ΦÂ(X
2
d) is an even integer. This verifies Theorem 2.0.9 in this case,

since X2
d is spin iff d is even.

Remark 2. These calculations have very interesting consequences. For instance, while
X2

2
∼= P1 × P1 clearly admits a metric of everywhere positive scalar curvature, the mani-

folds X2
2k for k ≥ 2 do not, by the above calculation and Theorem 2.0.10. Taking k = 2

gives us a quartic surface X2
4 , the famous K3 surface, for which we have b2,4 = 22 and

ΦL(X
2
4 ) = −16, which along with the fact that the intersection form on H2(X2

4 ;Z) is even
completely determines this middle cohomology group as the lattice ΛK3 = U⊕3⊕E8(−1)2.
(See [4, Ch. 1., Prop. 3.5]).
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