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2 Symplectic Forms

1 Introduction

The goal of this project is to expand on a paper by Sternberg on how to use symplectic geometry to
couple a classical particle to a Yang-Mills field. He demonstrates that the symplectic procedure, for
a general manifold M and gauge group G, generalizes the standard minimal coupling procedure for a
particle in a classical electromagnetic field. The generalization allows for particles with charges that
transform in nontrivial representations of the gauge group (which arise in nonabelian gauge theories).
The idea is to use the connection form on the principal bundle to introduce a symplectic structure on
certain associated bundles in a way that is automatically gauge invariant.

2 Symplectic Forms

In this section, we closely follow [1].

2.1 Fundamental Definitions

Definition 1. Let M be a smooth manifold. Then a symplectic form on M is a closed nondegenerate two
form ω ∈ Ω2(M). A pair (M,ω) of a manifold and a symplectic form is called a symplectic manifold.

Example 1. Let M = S2 ⊂ R3 as the unit vectors, so that for p ∈ S2, the tangent space TpS2 ⊂ TpR3 =
R3 is the set of vectors orthogonal to p. Then ω ∈ Ω2S2 defined by ωp(u, v) = ⟨p, u × v⟩ is symplectic.
This can equivalently be written in cylindrical coordinates (θ, h) as ω = dθ ∧ dh.

Example 2. Let M be any manifold with local coordinates q1, . . . , qn. Then any differential one form α
in these local coordinates can be written as1 pidqi. Then (q1, . . . , qn, p

1, . . . , pn) define local coordinates
on the cotangent bundle T ∗M , and we define the Liouville one-form α ∈ Ω1(T ∗M) by α = pidqi. (This
can be checked to be well-defined independent of choice of coordinates.) Then ω = −dα = dqi ∧ dpi is a
symplectic form on T ∗M called the canonical symplectic form.

As a special case, take M = Rn with global coordinates qi and pi on T ∗Rn ∼= R2n. Then the
canonical symplectic form ω = dqi ∧ dpi.

Why do physicists care about these objects? The answer lies in Theorem 1 below.

Definition 2. Let (M,ω) be a symplectic manifold and H : M → R a smooth function, thought of as the
Hamiltonian function. Then, by nondegeneracy of ω there is a unique vector field XH ∈ Γ(M,TM) such
that the interior product XH ⌟ω = dH, called the Hamiltonian vector field associated to H. Its flow is called
the Hamiltonian flow generated by the Hamiltonian function H.

If ρt denotes the local flow of XH , then it follows from

d

dt
ρ∗tω = ρ∗tLXH

ω = ρ∗t (d(XH ⌟ ω) +XH ⌟ (dω)) = 0

that the flow of XH preserves ω.

Example 3. If (M,ω) = (S2,dθ ∧ dh), then taking H = h : S2 → R to be the height function, we see
that XH ⌟ (dθ ∧ dh) = dh ⇒ XH = ∂/∂θ. The flow of XH is ρt(θ, h) = (θ+ t, h), which clearly preserves
the symplectic form ω and the Hamiltonain H.

Theorem 1. Consider (M,ω) = (R2n,dqi ∧ dpi), and let H : M → R be any Hamiltonian. Then a curve
γ : I → M , γ(t) = (q(t), p(t)) is an integral curve of the vector field XH iff Hamilton’s equations of motion
hold:

q̇i(t) =
∂H

∂pi

∣∣∣∣
γ(t)

and ṗi(t) = −∂H

∂qi

∣∣∣∣
γ(t)

.

1We’re using the Einstein convention.
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2 Symplectic Forms

Proof. This amounts to calculting XH . If XH = fi
∂

∂qi
+ gi

∂

∂pi
, then

(XH⌟ω)(Y ) = ω(XH , Y ) = (dqi∧dpi)(XH , Y ) = dqi(XH)dpi(Y )−dqi(Y )dpi(XH) = fidp
i(Y )−gidqi(Y ).

Therefore,

fidp
i − gidqi = XH ⌟ ω = dH =

∂H

∂pi
dpi +

∂H

∂qi
dqi.

Consequently,

fi =
∂H

∂pi
and gi =

∂H

∂qi
so XH =

∂H

∂pi
∂

∂qi
− ∂H

∂qi

∂

∂pi
.

The claim follows because integral curves γ satisfy by definition γ̇(t) = XH

∣∣
γ(t)

. ■

Therefore, the study of (integral curves of) Hamiltonian vector fields on symplectic manifolds
is a vast generalization of the study of solutions to Hamiltonian’s equations in Euclidean space.

2.2 Moment Maps

Definition 3. A smooth action ρ of a Lie group G on a symplectic manifold (M,ω) is symplectic if it acts
by symplectomorphisms, i.e. for every g ∈ G we have ρ∗gω = ω.

A symplectic action of R on a manifold gives us a one-parameter group of symplectomorphisms,
whose derivative at t = 0 is a symplectic vector field.

Definition 4. A symplectic action of R on a manifold is Hamiltonian if its derivative at t = 0 is a Hamiltonian
vector field.

Example 4. The action of R on (S2,dθ∧ dh) given by ρt(θ, h) = (θ+ t, h) is a Hamiltonian action with
its derivative at t = 0 being simply ∂/∂θ = Xh.

We can ask how to generalize this to arbitrary Lie groups, and here we provide the basic
definitions. Recall that for a Lie group G, conjugating by g ∈ G gives a diffeomorphism Ψg : G →
G, h 7→ ghg−1, whose derivative Ad(g) = TeG → TeG is a linear automorphism of TeG = g. Putting
these together, we get a homomorphism Ad : G → GL(g), which is a smooth representation of G called
the adjoint representation. The coadjoint representation is the dual of this, i.e. the representation Ad∗ :
G → GL(g∗) with the property that for every g ∈ G, ξ ∈ g∗ and v ∈ g we have ⟨Ad∗g ξ, v⟩ = ⟨ξ,Adg−1 v⟩.

Definition 5. Let ρ be a symplectic action of a Lie group G on a symplectic manifold M . Then the ρ is
called Hamiltonian if there is a smooth map, the moment map, µ : M → g∗ with the following properties:

(a) Let v ∈ g, and let µv : M → R denote the map µv(p) = ⟨v, µ(p)⟩, where ⟨·, ·⟩ : g × g∗ → R
is the canonical pairing. If Xv is the vector field on M generated by the one-parameter subgroup
{exp(tv) : t ∈ R} ⊂ G, then dµv = Xv ⌟ ω, i.e. µv is a Hamiltonian function for the vector field Xv.

(b) The map µ is equivariant w.r.t the action of G and the coadjoint representation, i.e. for all g ∈ G we
have µ ◦ ρg = Ad∗g ◦µ.

The name comes from the fact that this generalizes the classical notions of momenta.

Example 5. Consider (T ∗Rn,dqi ∧ dpi) and the left-action of Rn by translations: for a ∈ Rn, we
define ρa(q, p) = (q + a, p). Consider the natural identifications g = R⟨ ∂

∂ai
⟩ and g∗ = R⟨dai⟩. Then

for v = vi
∂

∂ai
, the vector field Xv = vi

∂
∂qi

and the inner product Xv ⌟ ω = vidp
i = d

(
vip

i
)
, so that

µ : M → g∗ must by given my (q, p) 7→ pidai, i.e. the classical momentum. Similarly, the SOn action on
Rn lifts to an action on T ∗Rn by symplectomorphisms, which is Hamiltonian with respect to the angular
momentum map T ∗Rn → so∗n, for example in dimension n = 3 given by the cross-product as usual.

When G is a connected Lie group, this can equivalently be described in terms of the comoment
map µ∗ : g → 𝒞∞(M) where the two conditions are rephrased as µ∗(v) = µv, and the fact that µ∗ is
a Lie algebra homomorphism, i.e. for v, w ∈ g we have µ∗([v, w]) = {µ∗v, µ∗w}, where the last is the
Poisson bracket defined as {f, g} := ω(Xf , Xg). We now have all the technical tools set up.
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4 Coupling to Charged Matter

3 The Yang-Mills Situation

A reference for the differential geometry background is [2]. A reference for Yang-Mills theory is [3].

Yang-Mills theory is a generalization of electromagnetism to gauge theories with nonabelian
gauge groups. In order to describe Yang-Mills theory in the general setting, we will need to introduce
the notion of a connection on a principal bundle.

Definition 6. Let G be a Lie group and M a smooth manifold. A principal G-bundle over M is a fiber
bundle π : E → M with a smooth right action of G on E that is free, preserves the fibers of π, and acts
transitively on the fibers.

Let v ∈ g define a vector field Xv which associates to a point p ∈ E the tangent vector at t = 0
of p exp(tv).

Definition 7. Let g = TeG. A connection A on E is a g-valued one form that satisfies the following
conditions: A(Xv) = v for any v ∈ g, and for every g ∈ G and s ∈ TE, (Rg)∗A(s) = gA(s)g−1 = Adg A(s),
where Rg is the right action by g.

Example 6. For any Lie group G and manifold M , the product bundle G×M is a principal G-bundle
with the action g(h, x) = (hg−1, x).

Example 7. The quotient map S2n+1 → CPn defined by the action of U(1) by complex multiplication
gives a principal U(1)-bundle over CPn.

Definition 8. The curvature of a connection A is the g-valued two form FA = dA+ 1
2 [A ∧A].

In Yang-Mills theory, a field configuration is a connection on the principal G-bundle over the
spacetime manifold M , where G is the gauge group. The dynamics of the theory are defined by a
Lagrangian involving the curvature of the connection.

Definition 9. The Yang-Mills Lagrangian density, for a connection A, is

L = −1

2
Tr (FA ∧ ⋆FA) ,

where ⋆ is the Hodge star operator.

To recast this in more standard physics language, Yang-Mills theory is a theory with fields A
that take matrix values in the Lie algebra of the gauge group. The field strength is

F a
µν = ∂µA

a
ν − ∂νA

a
µ + fabcAb

µA
c
ν ,

where µ and ν are spacetime indices, the a index runs over the generators of the Lie algebra, and the
fabc are the Lie algebra structure constants. The Lagrangian density is then

L = −1

4
FµνaF a

µν .

4 Coupling to Charged Matter

In this section, we follow the argument in [4].

The Yang-Mills Lagrangian in the previous case did not include any charged matter coupled to
the Yang-Mills fields. In this section we will describe a very general procedure to produce such a coupling.
Let (F, ω) be a symplectic manifold and let G have a left action on F that is Hamiltonian, so that we
have a moment map µ : F → g∗. Let π : P → M be a principal G-bundle for a compact Lie group G.
The actions of G on P and F yield an action Q on P ×F , given by Qg(p, f) = (Rgp, Lgf) = (pg−1, gf),
for g ∈ G, p ∈ P , and f ∈ F . We will form the associated fiber bundle P ×G F → M with fiber F by
taking the quotient of P × F by the action of G.

Let A be a connection on P . By pairing A, which is a g-valued differential form on P , with the
moment map, we get a real-valued differential form ⟨A,µ⟩ on P × F . Then

Q∗
g⟨A,µ⟩ = ⟨R∗

gA,L∗
gµ⟩ = ⟨AdgA,Ad∗gµ⟩ = ⟨A,µ⟩.

4



4 Coupling to Charged Matter

The exterior derivative of this form is

d⟨A,µ⟩ = ⟨dA,µ⟩ − ⟨A,dµ⟩,

where we interpret dµ as a g∗-valued differential form. An element of the Lie algebra v and the action
of G induces a vector field XQ on P × F , which can be written XQ = (XP , XF ), where XP and XF are
the vector fields induced by the G actions on P and F . Then

XQ ⌟ d⟨A,µ⟩ = ⟨XP ⌟ dA,µ⟩ − ⟨XP ⌟A,dµ⟩+ ⟨A,XF ⌟ dµ⟩.

By the definition of a connection, we have (Rg)
∗A = AdgA. Differentiating this relation at

the identity in G gives DXv
A = advA for v ∈ g. Using Cartan’s formula, we have DXv

A = Xv ⌟ dA +
d(A(Xv)). Since A(Xv) = v, we have d(A(Xv)) = 0. Therefore DXv

A = Xv ⌟ dA = advA. Using this
relation in the previous calculation gives

XQ ⌟ d⟨A,µ⟩ = ⟨adv, µ⟩ − ⟨v,dµ⟩+ ⟨A, ad∗vµ⟩ = −⟨v,dµ⟩ = −XF ⌟ ω,

where the last equality used the definition of the moment map. Since this is nonvanishing, d⟨A,µ⟩ will
not descend to a differential form on the quotient P ×G F . However, if we pullback the symplectic
form ω to P × F using the projection to F , then XQ ⌟ ω = XF ⌟ ω. Therefore XQ ⌟ (d⟨A,µ⟩ + ω) =
−XF ⌟ ω +XF ⌟ ω = 0. Furthermore,

Q∗
g⟨A,µ⟩ = ⟨R∗

gA,L∗
gµ⟩ = ⟨AdgA,Ad∗gµ⟩ = ⟨A,µ⟩.

Also, Q∗
gω = L∗

gω = ω since the G action is symplectic. These two results imply that d⟨A,µ⟩+ω descends
to a form ωA on P ×G F . Because d⟨A,µ⟩+ ω is closed, so is ωA.

Assume further that there is a symplectic form Ω on M . We can pullback this form to P ×G F ,
and then Ω + ωA will be a closed two-form on P ×G F . As long as this form is nondegenerate, this will
define a symplectic structure on P ×G F . In particular, when M is the cotangent bundle of another
manifold with the canonical symplectic structure, then this form will be nondegenerate.

We will now show that this recovers the standard minimal coupling for electromagnetism. The
typical procedure is to take the Hamiltonian H for the particle without any coupling to the field and
substitute p 7→ p − edA, where p is the four-momentum, A is the field potential, and e is the charge of
the particle.

Let M be Minkowski space and X = T ∗M with the canonical symplectic form ω. Let G = U(1)
and F a single point, with the moment map µ : F → g∗ = R just picking out a point e. Let P → M
be a principal U(1)-bundle and A a connection. Then we can form the pullback bundle P̃ → T ∗M = X
and the connection lifts to a form on the pullback bundle. This form can be written in local coordinates
as Aidqi, where the qi are local coordinates on X. Since F is just a point, P̃ ×G F = X. The symplectic
form resulting from this procedure is ω + d⟨A,µ⟩ = ω + d(eA) = ω + e dA.

Let ϕ : X → X be the diffeomorphism defined by (p, q) 7→ (p+ eA, q). Let H be a Hamiltonian
function on X. The vector field ξ corresponding to the Hamiltonian H(ϕ−1(p, q)) (which corresponds to
the replacement p 7→ p− eA) generated by the standard symplectic form satisfies ξ ⌟ ω = d(H ◦ ϕ−1) =
(ϕ−1)∗dH. Notice that ϕ∗(ω) = ω + edA, which is our modified symplectic form. We then have
ϕ∗(ξ ⌟ ω) = (ϕ∗ξ) ⌟ (ω + edA) = dH. Therefore ϕ∗ξ is the Hamiltonian vector field for H generated
by the modified symplectic form. We see then that using modified symplectic form and the original
Hamiltonian for the free particle gives the same dynamics as the original Hamiltonian with the minimal
coupling substitution p 7→ p− eA.
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