On Powerful Integers Expressible as Sums of Two Coprime Fourth Powers ANTS-XV, University of Bristol

Noam D. Elkies ${ }^{1}$ and Gaurav Goel*2

Harvard University, Cambridge, MA, USA

August 2022

[^0]
Statement of Results

Definition

An integer N is said to be powerful if every prime factor $p \mid N$ satisfies $p^{2} \mid N$.
A powerful $N \geq 1$ is $a^{2} b^{3}$ for $a, b \in \mathbf{Z}$ with $a, b \geq 1$, uniquely if b is squarefree.

Theorem

The smallest powerful $N>1$ expressible as a sum of two coprime fourth powers is

$$
\begin{aligned}
N_{1}: & =3088257489493360278725196965477359217 \\
& =17^{3} \cdot 73993169^{2} \cdot 338837713^{2} \\
& =427511122^{4}+1322049209^{4},
\end{aligned}
$$

and this is in fact the only such integer up to $3.6125 \cdot 10^{37}$.

Statement of Results (Cont'd)

Further:
(1) We propose a candidate $\approx 1.06 \cdot 10^{60}$ for the next smallest such number, namely

$$
\begin{aligned}
& 17^{3} \cdot 38401618921^{2} \cdot 382833034044850177^{2} \\
= & 572132418369898^{4}+988478679472373^{4} .
\end{aligned}
$$

(2) We give an algorithm using the arithmetic of elliptic curves to quickly list all such numbers with small b; use it to go up to $2^{-2 / 3} \exp (400) \approx 3.29 \cdot 10^{173}$.
(3) We use (2) to propose a candidate $\approx 7.51 \cdot 10^{161}$ with $b=113$ for the smallest such number with $b \neq 17$.

Introduction and Motivation

Reconsider classical Diophantine equations with squares powerful numbers.
\square Powerful numbers contain the squares as a subset of positive density $\zeta(3) / \zeta(3 / 2) \approx 0.46$, so might expect solutions to be more numerous only by a constant factor, but...
\square New behavior can arise, e.g.
(1) consecutive powerful numbers, e.g. $3^{2}-2^{3}=17^{2}-2^{5} 3^{2}=1$ (Fermat-Pell), or
(2) 3-powerful "counterexamples" to FLT3, e.g. $2^{3} \cdot 3^{5} \cdot 73^{3}=919^{3}+(-271)^{3}$ (use the elliptic curve $x^{3}+y^{3}=b z^{3}$).

We search for powerful "counterexamples" to Fermat's theorem on solutions to $z^{2}=x^{4}+y^{4}$, i.e. for powerful N solutions to $N=x^{4}+y^{4}$ with coprime $x, y \in \mathbf{Z}$.

Expect such numbers to be rare, i.e. that the number of such $N \leq N_{\max }$ is $N_{\max }^{o(1)}$.

Introduction and Motivation (Cont'd)

\square Consider twists ${ }^{3}$ of the genus 1 curve $C: x^{4}+y^{4}=z^{2}$ of the form $C_{b}: x^{4}+y^{4}=b z^{2}$ for $b \in \mathbf{Z}$, and seek coprime $(x, y, z) \in \mathbf{Z}^{3}$ on C_{b} s.t. $b \mid z$.We show that if $C_{b}(\mathbf{Q})$ is nontrivial, then it contains an acceptable point.The first twist that works is C_{17} of rank 2 . The smallest soln. s.t. $17 \mid z$ is N_{1}.
To check that N_{1} is the smallest over all b seems hard: searching over (x, y) up to $N_{1}^{1 / 2}$ or over $b<N_{1}^{1 / 3}$ (and processing that many elliptic curves) is daunting!What to do?

[^1]
Why do we care?

Questions such as this one arise naturally.This question needs a combination of nontrivial theory and computation.It involves an application, not previously known, of a computation [1] of congruent number theta coefficients by Hart, Tornaria, and Watkins presented at ANTS-IX.It's fun!
Reducing from $1.46 \cdot 10^{12}$ to 66551915 Candidate b 's

Let $N>1$ be powerful and a sum of two coprime fourth powers. Then:
(1) Every $p \mid N$ is $1 \bmod 8$.

Proof Sketch: $2 \nmid N$ and odd $p \mid N \Rightarrow \exists \alpha \in(\mathbf{Z} / p)^{*}$ s.t. $\alpha^{4}=-1$.
(2) (Lucas) If $N=a^{2} b^{3}$ and b squarefree, then $a, b \geq 17$.

Proof Sketch: We have $b>1$ by Fermat. If $a=1$, then $x^{2} \pm i y^{2} \in \mathbf{Z}[i]$ are cubes. Reduce to showing $y^{2}=x^{3}+\{12,108\} x$ have rank 0 .

Let b be a product of $k \geq 1$ distinct primes, each $1 \bmod 8$, and $C_{b}: x^{4}+y^{4}=b z^{2}$.
(1) If $C_{b}(\mathbf{Q}) \neq \emptyset$, then C_{b} is \mathbf{Q}-isomorphic to its Jacobian $E_{b}: Y^{2}=X^{3}-4 b^{2} X$.
(2) The rational torsion of E_{b} is $E_{b}(\mathbf{Q})_{\text {tors }}=E_{b}[2]=\{\infty,(0,0),(\pm 2 b, 0)\}$.
(3) C_{b} has nontrivial rational point $\Leftrightarrow E_{b}$ has positive rank $\Leftrightarrow 2 b$ is congruent,
(4) in which case, by Coates-Wiles [2], E_{b} has positive analytic rank, and this can be checked via Tunnell's criterion [3].

Reducing from $1.46 \cdot 10^{12}$ to 66551915 Candidate b 's (Cont'd)

Look at squarefree $b \geq 1$ with each factor $1 \bmod 8$ such that $2 b$ is congruent.\square Going up to $b \leq M$ can be used to find all solutions up to $17^{2} M^{3}$.
\square The list of all such numbers (more precisely, of all b such that E_{b} has even positive analytic rank) up to $M=5 \cdot 10^{11}$ is included in the results of a recent comptuation [1] by Hart, Tornaria, and Watkins. ${ }^{4}$This leaves us with 66551915 "candidate b " values, and looking at these suffices to go up to $17^{2}\left(5 \cdot 10^{11}\right)^{3}=3.6125 \cdot 10^{37}>N_{1}$.

[^2]
Principal Search Strategy

Let $b \geq 1$ be as above and look for coprime $x, y, z \in \mathbf{Z}$ s.t. $x^{4}+y^{4}=b z^{2}$.
(1) Factor $x^{4}+y^{4}=\left(x^{2}+i y^{2}\right)\left(x^{2}-i y^{2}\right)$. Then $x^{2} \pm i y^{2} \in \mathbf{Z}[i]$ are coprime.
(2) Write $x^{2}+i y^{2}=\beta \zeta^{2}$ for $\beta, \zeta \in \mathbf{Z}[i]$ primitive of norms b, z respectively.
(3) Let $\beta=\mu+i v$ and $\zeta=r+i$ is for $\mu, v, r, s \in \mathbf{Z}$ with $\operatorname{gcd}(\mu, v)=\operatorname{gcd}(r, s)=1$. We are reduced to the conics

$$
\begin{aligned}
& x^{2}=Q_{1}(r, s):=\mu\left(r^{2}-s^{2}\right)-2 v r s, \\
& y^{2}=Q_{2}(r, s):=2 \mu r s+v\left(r^{2}-s^{2}\right) .
\end{aligned}
$$

If b has k prime factors, then (up to units) there are 2^{k} primitive $\beta \in \mathbf{Z}[i]$ of norm b. For each β, look at the two conics.
(1) If either conic is locally obstructed, discard β.
(2) Else, parametrize $x^{2}=Q_{1}(r, s)$ by $\mathbf{P}_{\mathbf{Q}}^{1}$ using $r, s, x \in \mathbf{Z}[m, n]_{2}$, BUT...
(3) Not sufficient. If $m, n \in \mathbf{Z}$, then $\operatorname{gcd}(m, n)=1 \nRightarrow \operatorname{gcd}(r(m, n), s(m, n))=1$.

Interlude: Integer Parametrizations of Planar Integer Quadratic Forms

\square Let $Q(r, s, x) \in \mathbf{Z}[r, s, x]_{2}$ s.t. the conic $C_{Q}=\mathbf{V}(Q) \subset \mathbf{P}^{2}$ is rational.
\square Usually, a single parametrization $(r, s, x) \in \mathbf{Z}[m, n]_{2}^{3}$ does not suffice to list all coprime triples $(r, s, x) \in \mathbf{Z}^{3}$ on Q by using only coprime $m, n \in \mathbf{Z}^{2}$.
\square For instance, let $Q=x^{2}-r^{2}-s^{2}$. This admits the parametrization $(r, s, x)=\left(m^{2}-n^{2}, 2 m n, m^{2}+n^{2}\right)$, but can't get $(4,3,5) \in \mathbf{Z}^{3}$ on Q by $m, n \in \mathbf{Z}$.
\square We show: there is a finite list $\left\{\left(r_{i}, s_{i}, x_{i}\right)\right\}_{i} \subset \mathbf{Z}[m, n]_{2}^{3}$ of parametrizations s.t. for every pairwise coprime triple $(r, s, x) \in \mathbf{Z}^{3}$ satisfying Q there is at least one i and some coprime $m, n \in \mathbf{Z}$ such that $(r, s, x)=\left(r_{i}(m, n), s_{i}(m, n), x_{i}(m, n)\right)$.

Proof Sketch: For each prime $\ell \mid \operatorname{disc} Q$, there is a finite set I_{ℓ} of parametrizations in $\mathbf{Z}_{\ell}[m, n]_{2}$ corresponding to the ℓ-adic components of Q.
These parametrizations $\left(r_{i}, s_{i}, x_{i}\right)$ are indexed by $i \in \prod_{\ell \mid \text { disc } Q} I_{\ell}$.
Elkies has written a gp routine qsolve that given a quadratic form Q produces such a list $\left(r_{i}, s_{i}, x_{i}\right)$ of parametrizations.

Principal Search Strategy (Cont'd)

(4) Produce a finite list $\left\{\left(r_{i}(m, n), s_{i}(m, n), x_{i}(m, n)\right)\right\}_{i}$ of parametrizations of the plane conic $x^{2}=Q_{1}(r, s)$ as above.
\square In our case, $\operatorname{disc} Q_{1}=4\left(\mu^{2}+v^{2}\right)=4 b$, so $\left|I_{2}\right|=1$ and $\left|I_{\ell}\right|=2$ for odd $\ell \mid b$, so 2^{k} parametrizations suffice.
(5) For each i, let $\Psi_{i}(m, n)=Q_{2}\left(r_{i}(m, n), s_{i}(m, n)\right)$. A point (x, y, z) as above then gives us a point on the elliptic curve $Y^{2}=\Psi_{i}(T, 1)$ for some i.
(6) Have strategy: find all β, find all $\left(r_{i}, s_{i}, x_{i}\right)$, and all points on $Y^{2}=\Psi_{i}(T, 1)$ using Stoll's hyperellratpoints up to a calculated height bound.

This strategy sufficed to prove the theorem.

Another Strategy for Small b 's

\square For a $b \geq 1$ as above, consider the 2-isogenous $E_{b}^{\prime}: Y^{2}=X^{3}+b^{2} X$ which admits a map $\rho_{b}: C_{b} \rightarrow E_{b}^{\prime},(x: y: z) \mapsto\left(b(x / y)^{2}, b^{2} x z / y^{3}\right)$.
\square Algorithm: for each $b \geq 1$,
(i) find all $P \in E_{b}^{\prime}(\mathbf{Q})$ with $\hat{h}(P) \leq \frac{1}{2} \log N_{\max }+\frac{1}{3} \log 2$, and
(ii) for each $P=(X, Y)$ check if $X / b \in\left(\mathbf{Q}^{*}\right)^{2}$. If not, discard P.
(iii) Else, write $\sqrt{X / b}=x / y$ for coprime $x, y \in \mathbf{Z}$ and let $z:=Y y^{3} /\left(b^{2} x\right)$.
(iv) For (x, y, z) as in (iii), check if $b \mid z$.
\square We show: the set of acceptable points in $E_{b}^{\prime}(\mathbf{Q})$ forms a coset of a subgroup of $E_{b}^{\prime}(\mathbf{Q})$ of index dividing $2^{k} b$.

Proof Sketch: $\rho_{b}\left(C_{b}(\mathbf{Q})\right)=w_{2}^{-1}[b]$ where $w_{2}=[X]: E_{b}^{\prime}(\mathbf{Q}) \rightarrow \mathbf{Q}^{*} /\left(\mathbf{Q}^{*}\right)^{2}$.
For $p \mid b$, curve $E_{b}^{\prime}\left(\mathbf{Q}_{p}\right)$ has Kodaira type I_{0}^{*} and Tamagawa number $c_{p}=4$; using this, figure out when a point is p-acceptable.
\square Given gens. P_{1}, \ldots, P_{r} of $E_{b}^{\prime}(\mathbf{Q}) /$ tors, a $P=\sum_{i=1}^{r} a_{i} P_{i} \in E_{b}^{\prime}(\mathbf{Q})$ is acceptable iff the $a_{i} \in \mathbf{Z}$ satisfy a few linear congruences $\bmod 2$ and $\bmod p$ for each $p \mid b$.

Given generators of $E_{b}^{\prime}(\mathbf{Q})$, can list all acceptable points up to any height.

Another Strategy for Small b's (Cont'd)

\square The BSD conjecture and heuristics on $L(E, s)$ at $s=1$ suggest that the regulators of E_{b}, E_{b}^{\prime} grow not faster than $b^{1 / 2+o(1)}$.
\square Our curves have rank ≥ 2, so their MW groups would be typically generated by points of height at most $b^{1 / 4+o(1)}$.
\square Can't find generators of $E_{b}^{\prime}(\mathbf{Q})$ for a typical $b<5 \cdot 10^{11}$, but a 2-descent in mwrank [4] sufficed to find the full MW group for most "small" b (i.e. $b<10^{4}$).
\square Since $(0,0) \in E_{b}^{\prime}(\mathbf{Q})[2]$, mwrank easily found all principal homogenous spaces.
\square For 67 of the 72 candidate $b<10^{4}$ (all except 4721, 4777, 6497, 6577, and 9881), mwrank found 2 independent points in $E_{b}^{\prime}(\mathbf{Q})$ and proved that they together with torsion $(0,0)$ generate $E_{b}^{\prime}(\mathbf{Q})$.

This allowed us to go up to $2^{-2 / 3} \exp (400)$ for all but five $b<10^{4}$ to find the other solutions mentioned on the results page.

Suggestions for Further Work

To take our analysis beyond $3.6125 \cdot 10^{37}$, we would need either
\square an extension of the Hart-Tornaria-Watkins [1] computation to $2 b>10^{12}$, or
\square an extension of Lucas's result on $x^{4}+y^{4}=a^{2} b^{3}$ to $a=17,41,73, \ldots$, or
\square a complete parametrization of coprime (X, y, b) such that $X^{2}+y^{4}=a^{2} b^{3}$ (as in Roberts [5] for $a=1$) by homogenous polynomials of degree 12 .

To take our second approach further, we would need
\square to find a better way (say using higher descent) of finding generators of the MW group of $E_{b}^{\prime}: Y^{2}=X^{3}+b^{2} X$, at least in the fairly special case when $b>1$ is a product of distinct primes, each $1 \bmod 8$, with $2 b$ congruent.

References

[1] W. B. Hart, G. Tornaria, and M. Watkins, "Congruent number theta coefficients to 10^{12}," 9th International Symposium on Algorithmic Number Theory, ANTS-IX 2010, vol. 6197, pp. 186-200, 2010.
[2] J. H. Coates and A. Wiles, "On the conjecture of Birch and Swinnerton-Dyer," Inventiones math., vol. 39, pp. 223-251, 1977.
[3] J. B. Tunnell, "A classical Diophantine problem and modular forms of weight 3/2," Inventiones math., vol. 72, no. 2, pp. 323-334, 1983.
[4] J. E. Cremona, "mwrank." http://homepages.warwick.ac.uk/staff/J.E.Cremona/mwrank/index.html.
[5] J. Edwards, "A complete solution to $x^{2}+y^{3}+z^{5}=0$," J. f.d. reine und angew. Math., vol. 571, pp. 213-236, 2004.

[^0]: ${ }^{1}$ Simons AGNTC Collaboration grant \#550031
 ${ }^{2}$ Harvard College Research Program (HCRP) Summer 2020

[^1]: ${ }^{3}$ A twist of a smooth projective curve C defined over a perfect field K is a smooth projective curve C^{\prime} defined over K that is isomorphic to C over \bar{K}.

[^2]: ${ }^{4}$ We thank Mark Watkins and William Hart for making this list available to us.

