On Powerful Integers Expressible as Sums of Two Coprime Fourth Powers ANTS-XV, University of Bristol

Noam D. Elkies¹ and Gaurav Goel*²

Harvard University, Cambridge, MA, USA

August 2022

¹Simons AGNTC Collaboration grant #550031

²Harvard College Research Program (HCRP) Summer 2020

Noam D. Elkies and Gaurav Goel*

Statement of Results

Definition

An integer N is said to be *powerful* if every prime factor $p \mid N$ satisfies $p^2 \mid N$.

A powerful $N \ge 1$ is a^2b^3 for $a, b \in \mathbb{Z}$ with $a, b \ge 1$, uniquely if b is squarefree.

Theorem

The smallest powerful N > 1 expressible as a sum of two coprime fourth powers is

 $N_1 := 3088257489493360278725196965477359217$ $= 17^3 \cdot 73993169^2 \cdot 338837713^2$ $= 427511122^4 + 1322049209^4,$

and this is in fact the only such integer up to $3.6125 \cdot 10^{37}$.

Statement of Results (Cont'd)

Further:

- (1) We propose a candidate $\approx 1.06 \cdot 10^{60}$ for the next smallest such number, namely $17^3 \cdot 38401618921^2 \cdot 382833034044850177^2$ $= 572132418369898^4 + 988478679472373^4.$
- (2) We give an algorithm using the arithmetic of elliptic curves to quickly list all such numbers with small *b*; use it to go up to $2^{-2/3} \exp(400) \approx 3.29 \cdot 10^{173}$.
- (3) We use (2) to propose a candidate $\approx 7.51 \cdot 10^{161}$ with b = 113 for the smallest such number with $b \neq 17$.

Introduction and Motivation

 \Box Reconsider classical Diophantine equations with squares powerful numbers.

 \Box Powerful numbers contain the squares as a subset of positive density $\zeta(3)/\zeta(3/2) \approx 0.46$, so might expect solutions to be more numerous only by a constant factor, but...

 \Box New behavior can arise, e.g.

(1) consecutive powerful numbers, e.g. $3^2 - 2^3 = 17^2 - 2^5 3^2 = 1$ (Fermat-Pell), or

(2) 3-powerful "counterexamples" to FLT3, e.g. $2^3 \cdot 3^5 \cdot 73^3 = 919^3 + (-271)^3$ (use the elliptic curve $x^3 + y^3 = bz^3$).

□ We search for powerful "counterexamples" to Fermat's theorem on solutions to $z^2 = x^4 + y^4$, i.e. for powerful *N* solutions to $N = x^4 + y^4$ with coprime $x, y \in \mathbb{Z}$.

□ Expect such numbers to be rare, i.e. that the number of such $N \le N_{\text{max}}$ is $N_{\text{max}}^{o(1)}$.

Introduction and Motivation (Cont'd)

□ Consider twists³ of the genus 1 curve $C : x^4 + y^4 = z^2$ of the form $C_b : x^4 + y^4 = bz^2$ for $b \in \mathbb{Z}$, and seek coprime $(x, y, z) \in \mathbb{Z}^3$ on C_b s.t. $b \mid z$.

 \square We show that if $C_b(\mathbf{Q})$ is nontrivial, then it contains an *acceptable* point.

 \Box The first twist that works is C_{17} of rank 2. The smallest soln. s.t. 17 | z is N_1 .

□ To check that N_1 is the smallest over all *b* seems hard: searching over (x, y) up to $N_1^{1/2}$ or over $b < N_1^{1/3}$ (and processing that many elliptic curves) is daunting!

 \Box What to do?

³A *twist* of a smooth projective curve C defined over a perfect field K is a smooth projective curve C' defined over K that is isomorphic to C over \overline{K} .

Why do we care?

 \Box Questions such as this one arise naturally.

 \Box This question needs a combination of nontrivial theory and computation.

□ It involves an application, not previously known, of a computation [1] of congruent number theta coefficients by Hart, Tornaria, and Watkins presented at ANTS-IX.

 \Box It's fun!

Reducing from $1.46 \cdot 10^{12}$ to 66551915 Candidate *b*'s

Let N > 1 be powerful and a sum of two coprime fourth powers. Then:

(1) Every $p \mid N$ is 1 mod 8.

Proof Sketch: $2 \nmid N$ and odd $p \mid N \Rightarrow \exists \alpha \in (\mathbb{Z}/p)^*$ s.t. $\alpha^4 = -1$.

(2) (Lucas) If N = a²b³ and b squarefree, then a, b ≥ 17. *Proof Sketch*: We have b > 1 by Fermat. If a = 1, then x² ± iy² ∈ Z[i] are cubes. Reduce to showing y² = x³ + {12, 108}x have rank 0.

Let b be a product of $k \ge 1$ distinct primes, each 1 mod 8, and $C_b : x^4 + y^4 = bz^2$.

- (1) If $C_b(\mathbf{Q}) \neq \emptyset$, then C_b is **Q**-isomorphic to its Jacobian $E_b: Y^2 = X^3 4b^2X$.
- (2) The rational torsion of E_b is $E_b(\mathbf{Q})_{\text{tors}} = E_b[2] = \{\infty, (0,0), (\pm 2b, 0)\}.$
- (3) C_b has nontrivial rational point $\Leftrightarrow E_b$ has positive rank $\Leftrightarrow 2b$ is congruent,
- (4) in which case, by Coates-Wiles [2], E_b has positive analytic rank, and this can be checked via Tunnell's criterion [3].

Reducing from $1.46 \cdot 10^{12}$ to 66551915 Candidate *b*'s (Cont'd)

- \Box Look at squarefree $b \ge 1$ with each factor 1 mod 8 such that 2b is congruent.
- □ Going up to $b \le M$ can be used to find all solutions up to $17^2 M^3$.
- □ The list of all such numbers (more precisely, of all *b* such that E_b has even positive analytic rank) up to $M = 5 \cdot 10^{11}$ is included in the results of a recent comptuation [1] by Hart, Tornaria, and Watkins.⁴
- □ This leaves us with 66551915 "candidate *b*" values, and looking at these suffices to go up to $17^2(5 \cdot 10^{11})^3 = 3.6125 \cdot 10^{37} > N_1$.

⁴We thank Mark Watkins and William Hart for making this list available to us.

On Powerful Integers Expressible as Sums of Two Coprime Fourth Powers

Principal Search Strategy

Let $b \ge 1$ be as above and look for coprime $x, y, z \in \mathbb{Z}$ s.t. $x^4 + y^4 = bz^2$.

- (1) Factor $x^4 + y^4 = (x^2 + iy^2)(x^2 iy^2)$. Then $x^2 \pm iy^2 \in \mathbf{Z}[i]$ are coprime.
- (2) Write $x^2 + iy^2 = \beta \zeta^2$ for $\beta, \zeta \in \mathbb{Z}[i]$ primitive of norms b, z respectively.
- (3) Let $\beta = \mu + i\nu$ and $\zeta = r + is$ for $\mu, \nu, r, s \in \mathbb{Z}$ with $gcd(\mu, \nu) = gcd(r, s) = 1$. We are reduced to the conics

$$x^{2} = Q_{1}(r,s) := \mu(r^{2} - s^{2}) - 2\nu rs,$$

$$y^{2} = Q_{2}(r,s) := 2\mu rs + \nu(r^{2} - s^{2}).$$

If *b* has *k* prime factors, then (up to units) there are 2^k primitive $\beta \in \mathbb{Z}[i]$ of norm *b*. For each β , look at the two conics.

- (1) If either conic is locally obstructed, discard β .
- (2) Else, parametrize $x^2 = Q_1(r,s)$ by $\mathbf{P}_{\mathbf{O}}^1$ using $r, s, x \in \mathbf{Z}[m,n]_2$, BUT...
- (3) Not sufficient. If $m, n \in \mathbb{Z}$, then $gcd(m, n) = 1 \not\Rightarrow gcd(r(m, n), s(m, n)) = 1$.

Interlude: Integer Parametrizations of Planar Integer Quadratic Forms

 \Box Let $Q(r,s,x) \in \mathbb{Z}[r,s,x]_2$ s.t. the conic $C_Q = \mathbb{V}(Q) \subset \mathbb{P}^2$ is rational.

- □ Usually, a single parametrization $(r, s, x) \in \mathbb{Z}[m, n]_2^3$ does not suffice to list all coprime triples $(r, s, x) \in \mathbb{Z}^3$ on *Q* by using only coprime $m, n \in \mathbb{Z}^2$.
- □ For instance, let $Q = x^2 r^2 s^2$. This admits the parametrization $(r, s, x) = (m^2 n^2, 2mn, m^2 + n^2)$, but can't get $(4, 3, 5) \in \mathbb{Z}^3$ on Q by $m, n \in \mathbb{Z}$.
- □ We show: there is a finite list $\{(r_i, s_i, x_i)\}_i \subset \mathbb{Z}[m, n]_2^3$ of parametrizations s.t. for every pairwise coprime triple $(r, s, x) \in \mathbb{Z}^3$ satisfying *Q* there is at least one *i* and some coprime $m, n \in \mathbb{Z}$ such that $(r, s, x) = (r_i(m, n), s_i(m, n), x_i(m, n))$.

Proof Sketch: For each prime $\ell \mid \text{disc } Q$, there is a finite set I_{ℓ} of parametrizations in $\mathbb{Z}_{\ell}[m,n]_2$ corresponding to the ℓ -adic components of Q. These parametrizations (r_i, s_i, x_i) are indexed by $i \in \prod_{\ell \mid \text{disc } Q} I_{\ell}$.

Elkies has written a gp routine qsolve that given a quadratic form Q produces such a list (r_i, s_i, x_i) of parametrizations.

Principal Search Strategy (Cont'd)

- (4) Produce a finite list {(r_i(m,n),s_i(m,n),x_i(m,n))}_i of parametrizations of the plane conic x² = Q₁(r,s) as above.
 - □ In our case, disc $Q_1 = 4(\mu^2 + \nu^2) = 4b$, so $|I_2| = 1$ and $|I_\ell| = 2$ for odd $\ell \mid b$, so 2^k parametrizations suffice.
- (5) For each *i*, let $\Psi_i(m,n) = Q_2(r_i(m,n), s_i(m,n))$. A point (x, y, z) as above then gives us a point on the elliptic curve $Y^2 = \Psi_i(T, 1)$ for some *i*.
- (6) Have strategy: find all β , find all (r_i, s_i, x_i) , and all points on $Y^2 = \Psi_i(T, 1)$ using Stoll's hyperellratpoints up to a calculated height bound.

This strategy sufficed to prove the theorem.

Another Strategy for Small b's

□ For a $b \ge 1$ as above, consider the 2-isogenous $E'_b: Y^2 = X^3 + b^2 X$ which admits a map $\rho_b: C_b \to E'_b, (x:y:z) \mapsto (b(x/y)^2, b^2 xz/y^3)$.

\Box Algorithm: for each $b \ge 1$,

- (i) find all $P \in E'_b(\mathbf{Q})$ with $\hat{h}(P) \le \frac{1}{2}\log N_{\max} + \frac{1}{3}\log 2$, and
- (ii) for each P = (X, Y) check if $X/b \in (\mathbf{Q}^*)^2$. If not, discard *P*.
- (iii) Else, write $\sqrt{X/b} = x/y$ for coprime $x, y \in \mathbb{Z}$ and let $z := Yy^3/(b^2x)$.
- (iv) For (x, y, z) as in (iii), check if $b \mid z$.
- \square We show: the set of acceptable points in $E'_b(\mathbf{Q})$ forms a coset of a subgroup of $E'_b(\mathbf{Q})$ of index dividing $2^k b$.

Proof Sketch: $\rho_b(C_b(\mathbf{Q})) = w_2^{-1}[b]$ where $w_2 = [X] : E'_b(\mathbf{Q}) \to \mathbf{Q}^*/(\mathbf{Q}^*)^2$. For $p \mid b$, curve $E'_b(\mathbf{Q}_p)$ has Kodaira type I_0^* and Tamagawa number $c_p = 4$; using this, figure out when a point is *p*-acceptable.

□ Given gens. $P_1, ..., P_r$ of $E'_b(\mathbf{Q})/\text{tors}$, a $P = \sum_{i=1}^r a_i P_i \in E'_b(\mathbf{Q})$ is acceptable iff the $a_i \in \mathbf{Z}$ satisfy a few linear congruences mod 2 and mod p for each $p \mid b$.

 \Box Given generators of $E'_{h}(\mathbf{Q})$, can list all acceptable points up to any height.

Another Strategy for Small *b*'s (Cont'd)

- □ The BSD conjecture and heuristics on L(E, s) at s = 1 suggest that the regulators of E_b, E'_b grow not faster than $b^{1/2+o(1)}$.
- □ Our curves have rank ≥ 2, so their MW groups would be typically generated by points of height at most $b^{1/4+o(1)}$.
- □ Can't find generators of $E'_b(\mathbf{Q})$ for a typical $b < 5 \cdot 10^{11}$, but a 2-descent in mwrank [4] sufficed to find the full MW group for most "small" b (i.e. $b < 10^4$).

□ Since $(0,0) \in E'_b(\mathbf{Q})[2]$, mwrank easily found all principal homogenous spaces.

- □ For 67 of the 72 candidate $b < 10^4$ (all except 4721,4777,6497,6577, and 9881), mwrank found 2 independent points in $E'_b(\mathbf{Q})$ and proved that they together with torsion (0,0) generate $E'_b(\mathbf{Q})$.
- □ This allowed us to go up to $2^{-2/3} \exp(400)$ for all but five $b < 10^4$ to find the other solutions mentioned on the results page.

Suggestions for Further Work

To take our analysis beyond $3.6125 \cdot 10^{37}$, we would need either

 \Box an extension of the Hart-Tornaria-Watkins [1] computation to $2b > 10^{12}$, or

- □ an extension of Lucas's result on $x^4 + y^4 = a^2b^3$ to a = 17, 41, 73, ..., or
- □ a complete parametrization of coprime (X, y, b) such that $X^2 + y^4 = a^2b^3$ (as in Roberts [5] for a = 1) by homogenous polynomials of degree 12.

To take our second approach further, we would need

□ to find a better way (say using higher descent) of finding generators of the MW group of E'_b : $Y^2 = X^3 + b^2X$, at least in the fairly special case when b > 1 is a product of distinct primes, each 1 mod 8, with 2*b* congruent.

Conclusions and Suggestions for Further Research

References

- W. B. Hart, G. Tornaria, and M. Watkins, "Congruent number theta coefficients to 10¹²," 9th International Symposium on Algorithmic Number Theory, ANTS-IX 2010, vol. 6197, pp. 186–200, 2010.
- [2] J. H. Coates and A. Wiles, "On the conjecture of Birch and Swinnerton-Dyer," *Inventiones math.*, vol. 39, pp. 223–251, 1977.
- [3] J. B. Tunnell, "A classical Diophantine problem and modular forms of weight 3/2," *Inventiones math.*, vol. 72, no. 2, pp. 323–334, 1983.
- [4] J. E. Cremona, "mwrank." http://homepages.warwick.ac.uk/staff/J.E.Cremona/mwrank/index.html.
- [5] J. Edwards, "A complete solution to $x^2 + y^3 + z^5 = 0$," *J. f.d. reine und angew. Math.*, vol. 571, pp. 213–236, 2004.