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Statement of Results

Statement of Results

Definition
An integer N is said to be powerful if every prime factor p | N satisfies p2 | N.

A powerful N ≥ 1 is a2b3 for a,b ∈ Z with a,b ≥ 1, uniquely if b is squarefree.

Theorem
The smallest powerful N > 1 expressible as a sum of two coprime fourth powers is

N1 : = 3088257489493360278725196965477359217

= 173 ·739931692 ·3388377132

= 4275111224 +13220492094,

and this is in fact the only such integer up to 3.6125 ·1037.
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Statement of Results

Statement of Results (Cont’d)

Further:

(1) We propose a candidate ≈ 1.06 ·1060 for the next smallest such number, namely

173 ·384016189212 ·3828330340448501772

= 5721324183698984 +9884786794723734.

(2) We give an algorithm using the arithmetic of elliptic curves to quickly list all
such numbers with small b; use it to go up to 2−2/3 exp(400)≈ 3.29 ·10173.

(3) We use (2) to propose a candidate ≈ 7.51 ·10161 with b = 113 for the smallest
such number with b ̸= 17.
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Introduction and Motivation

Introduction and Motivation

□ Reconsider classical Diophantine equations with squares powerful numbers.

□ Powerful numbers contain the squares as a subset of positive density
ζ (3)/ζ (3/2)≈ 0.46, so might expect solutions to be more numerous only by a
constant factor, but...

□ New behavior can arise, e.g.

(1) consecutive powerful numbers, e.g. 32 −23 = 172 −2532 = 1
(Fermat-Pell), or

(2) 3-powerful “counterexamples” to FLT3, e.g.
23 ·35 ·733 = 9193 +(−271)3 (use the elliptic curve x3 + y3 = bz3).

□ We search for powerful “counterexamples” to Fermat’s theorem on solutions to
z2 = x4 + y4, i.e. for powerful N solutions to N = x4 + y4 with coprime x,y ∈ Z.

□ Expect such numbers to be rare, i.e. that the number of such N ≤ Nmax is No(1)
max .
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Introduction and Motivation (Cont’d)

□ Consider twists3 of the genus 1 curve C : x4 + y4 = z2 of the form
Cb : x4 + y4 = bz2 for b ∈ Z, and seek coprime (x,y,z) ∈ Z3 on Cb s.t. b | z.

□ We show that if Cb(Q) is nontrivial, then it contains an acceptable point.

□ The first twist that works is C17 of rank 2. The smallest soln. s.t. 17 | z is N1.

□ To check that N1 is the smallest over all b seems hard: searching over (x,y) up
to N1/2

1 or over b < N1/3
1 (and processing that many elliptic curves) is daunting!

□ What to do?

3A twist of a smooth projective curve C defined over a perfect field K is a smooth projective curve C′

defined over K that is isomorphic to C over K.
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Introduction and Motivation

Why do we care?

□ Questions such as this one arise naturally.

□ This question needs a combination of nontrivial theory and computation.

□ It involves an application, not previously known, of a computation [1] of
congruent number theta coefficients by Hart, Tornaria, and Watkins presented at
ANTS-IX.

□ It’s fun!
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Reducing from 1.46 ·1012 to 66551915 Candidate b’s

Let N > 1 be powerful and a sum of two coprime fourth powers. Then:

(1) Every p | N is 1 mod 8.
Proof Sketch: 2 ∤ N and odd p | N ⇒∃α ∈ (Z/p)∗ s.t. α4 =−1.

(2) (Lucas) If N = a2b3 and b squarefree, then a,b ≥ 17.
Proof Sketch: We have b > 1 by Fermat. If a = 1, then x2 ± iy2 ∈ Z[i] are
cubes. Reduce to showing y2 = x3 +{12,108}x have rank 0.

Let b be a product of k ≥ 1 distinct primes, each 1 mod 8, and Cb : x4 + y4 = bz2.

(1) If Cb(Q) ̸= /0, then Cb is Q-isomorphic to its Jacobian Eb : Y2 = X3 −4b2X.

(2) The rational torsion of Eb is Eb(Q)tors = Eb[2] = {∞,(0,0),(±2b,0)}.

(3) Cb has nontrivial rational point ⇔ Eb has positive rank ⇔ 2b is congruent,

(4) in which case, by Coates-Wiles [2], Eb has positive analytic rank, and this can
be checked via Tunnell’s criterion [3].
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Reducing from 1.46 ·1012 to 66551915 Candidate b’s (Cont’d)

□ Look at squarefree b ≥ 1 with each factor 1 mod 8 such that 2b is congruent.

□ Going up to b ≤ M can be used to find all solutions up to 172M3.

□ The list of all such numbers (more precisely, of all b such that Eb has even
positive analytic rank) up to M = 5 ·1011 is included in the results of a recent
comptuation [1] by Hart, Tornaria, and Watkins.4

□ This leaves us with 66551915 “candidate b” values, and looking at these
suffices to go up to 172(5 ·1011)3 = 3.6125 ·1037 > N1.

4We thank Mark Watkins and William Hart for making this list available to us.
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Principal Search Strategy
Let b ≥ 1 be as above and look for coprime x,y,z ∈ Z s.t. x4 + y4 = bz2.

(1) Factor x4 + y4 = (x2 + iy2)(x2 − iy2). Then x2 ± iy2 ∈ Z[i] are coprime.

(2) Write x2 + iy2 = βζ 2 for β ,ζ ∈ Z[i] primitive of norms b,z respectively.

(3) Let β = µ + iν and ζ = r+ is for µ,ν ,r,s ∈ Z with gcd(µ,ν) = gcd(r,s) = 1.
We are reduced to the conics

x2 = Q1(r,s) := µ(r2 − s2)−2νrs,

y2 = Q2(r,s) := 2µrs+ν(r2 − s2).

If b has k prime factors, then (up to units) there are 2k primitive β ∈ Z[i] of norm b.
For each β , look at the two conics.

(1) If either conic is locally obstructed, discard β .

(2) Else, parametrize x2 = Q1(r,s) by P1
Q using r,s,x ∈ Z[m,n]2, BUT...

(3) Not sufficient. If m,n ∈ Z, then gcd(m,n) = 1 ̸⇒ gcd(r(m,n),s(m,n)) = 1.
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Principal Search Strategy

Interlude: Integer Parametrizations of Planar Integer Quadratic Forms

□ Let Q(r,s,x) ∈ Z[r,s,x]2 s.t. the conic CQ = V(Q)⊂ P2 is rational.

□ Usually, a single parametrization (r,s,x) ∈ Z[m,n]32 does not suffice to list all
coprime triples (r,s,x) ∈ Z3 on Q by using only coprime m,n ∈ Z2.

□ For instance, let Q = x2 − r2 − s2. This admits the parametrization
(r,s,x) = (m2 −n2,2mn,m2 +n2), but can’t get (4,3,5) ∈ Z3 on Q by m,n ∈ Z.

□ We show: there is a finite list {(ri,si,xi)}i ⊂ Z[m,n]32 of parametrizations s.t. for
every pairwise coprime triple (r,s,x) ∈ Z3 satisfying Q there is at least one i and
some coprime m,n ∈ Z such that (r,s,x) = (ri(m,n),si(m,n),xi(m,n)).

Proof Sketch: For each prime ℓ | discQ, there is a finite set Iℓ of
parametrizations in Zℓ[m,n]2 corresponding to the ℓ-adic components of Q.
These parametrizations (ri,si,xi) are indexed by i ∈ ∏ℓ|discQ Iℓ.

Elkies has written a gp routine qsolve that given a quadratic form Q
produces such a list (ri,si,xi) of parametrizations.
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Principal Search Strategy

Principal Search Strategy (Cont’d)

(4) Produce a finite list {(ri(m,n),si(m,n),xi(m,n))}i of parametrizations of the
plane conic x2 = Q1(r,s) as above.
□ In our case, discQ1 = 4(µ2 +ν2) = 4b, so |I2|= 1 and |Iℓ|= 2 for odd

ℓ | b, so 2k parametrizations suffice.

(5) For each i, let Ψi(m,n) = Q2(ri(m,n),si(m,n)). A point (x,y,z) as above then
gives us a point on the elliptic curve Y2 = Ψi(T,1) for some i.

(6) Have strategy: find all β , find all (ri,si,xi), and all points on Y2 = Ψi(T,1)
using Stoll’s hyperellratpoints up to a calculated height bound.

This strategy sufficed to prove the theorem.
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Another Strategy for Small b’s
□ For a b ≥ 1 as above, consider the 2-isogenous E′

b : Y2 = X3 +b2X which
admits a map ρb : Cb → E′

b,(x : y : z) 7→ (b(x/y)2,b2xz/y3).

□ Algorithm: for each b ≥ 1,
(i) find all P ∈ E′

b(Q) with ĥ(P)≤ 1
2 logNmax +

1
3 log2, and

(ii) for each P = (X,Y) check if X/b ∈ (Q∗)2. If not, discard P.
(iii) Else, write

√
X/b = x/y for coprime x,y ∈ Z and let z := Yy3/(b2x).

(iv) For (x,y,z) as in (iii), check if b | z.

□ We show: the set of acceptable points in E′
b(Q) forms a coset of a subgroup of

E′
b(Q) of index dividing 2kb.

Proof Sketch: ρb(Cb(Q)) = w−1
2 [b] where w2 = [X] : E′

b(Q)→ Q∗/(Q∗)2.
For p | b, curve E′

b(Qp) has Kodaira type I∗0 and Tamagawa number cp = 4;
using this, figure out when a point is p-acceptable.

□ Given gens. P1, . . . ,Pr of E′
b(Q)/tors, a P = ∑

r
i=1 aiPi ∈ E′

b(Q) is acceptable iff
the ai ∈ Z satisfy a few linear congruences mod 2 and mod p for each p | b.

□ Given generators of E′
b(Q), can list all acceptable points up to any height.
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Another Strategy for Small b’s (Cont’d)

□ The BSD conjecture and heuristics on L(E,s) at s = 1 suggest that the regulators
of Eb,E′

b grow not faster than b1/2+o(1).

□ Our curves have rank ≥ 2, so their MW groups would be typically generated by
points of height at most b1/4+o(1).

□ Can’t find generators of E′
b(Q) for a typical b < 5 ·1011, but a 2-descent in

mwrank [4] sufficed to find the full MW group for most “small” b (i.e. b < 104).

□ Since (0,0) ∈ E′
b(Q)[2], mwrank easily found all principal homogenous spaces.

□ For 67 of the 72 candidate b < 104 (all except 4721,4777,6497,6577, and
9881), mwrank found 2 independent points in E′

b(Q) and proved that they
together with torsion (0,0) generate E′

b(Q).

□ This allowed us to go up to 2−2/3 exp(400) for all but five b < 104 to find the
other solutions mentioned on the results page.
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Suggestions for Further Work

To take our analysis beyond 3.6125 ·1037, we would need either

□ an extension of the Hart-Tornaria-Watkins [1] computation to 2b > 1012, or

□ an extension of Lucas’s result on x4 + y4 = a2b3 to a = 17,41,73, . . . , or

□ a complete parametrization of coprime (X,y,b) such that X2 + y4 = a2b3 (as in
Roberts [5] for a = 1) by homogenous polynomials of degree 12.

To take our second approach further, we would need

□ to find a better way (say using higher descent) of finding generators of the MW
group of E′

b : Y2 = X3 +b2X, at least in the fairly special case when b > 1 is a
product of distinct primes, each 1 mod 8, with 2b congruent.
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